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Abstract. An open supersymmetrit-J chain with boundary fields is studied by means of

the Bethe ansatz. Ground state properties for the case of an almost half-filled band and a
bulk magnetic field are determined. Boundary susceptibilities are calculated as functions of the
boundary fields. The effects of the boundary on excitations are investigated by constructing the
exact boundangmatrix. From the analytic structure of the bound&ynatrices one deduces

that holons can form boundary bound states for sufficiently strong boundary fields.

1. Introduction

Recently there has been renewed interest in one-dimensional impurity problems and the
related problem of one-dimensional Luttinger liquids with boundaries [1-8]. The main
focus of these investigations has been the effects of Kondo-like impurities and effects due
to potential scattering in Luttinger liquids. These impurity problems are closely related to
open 1D systems with boundary fields. Some of these systems are integrable and can be
solved exactly by Bethe ansatz [9—-14]. In particular, in [1] an anisotropic Heisenberg chain
with open boundary conditions was studied. It is the purpose of the present work extend
the investigation of [1] to the case of theJ model, which is a Luttinger liquid with both

spin and charge degrees of freedom.

In [15] a trigonometric generalization of the supersymmetrid model with open
boundaries was constructed by means of the quantum-inverse scattering method (see, e.g.,
[25]). This generalized the previous work byrister and Karowski on the quantum-group
invariant case [16]. Here we study this model at the rational point, for which it reduces
to the supersymmetric-J model with open boundaries and boundary fields. The reason
for this restriction is that the trigonometric model in general leads to a non-Hermitian bulk
Hamiltonian. The only exception is the hyperbolic regime, but there the spin excitations
are gapped and thus irrelevant for the low-energy physics of the model. The Hamiltonian
we consider in the grand canonical ensemble is given by

L-1 L-1
B : N njnj+1
H= —P(jZ; ;c,,ac,-ﬂ,g + C}H’UCJ-,J)P +2 3 Sj-Sin—-,
L—1 .
+an+nj+1_HSZ_:u“N+Hf¥/3 (1)
j=l
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whereP projects out double occupancieS; are spin operators at sitg n; = c%c, ++
cficji, and the four possible choices of boundary Hamiltonidfg compatible with
integrability and conservation of total spin in thedirection and particle number are given
by

h
ny
Hy = h;l_nl + h/LnL Hyp = hy ( 2 ) + thL

h h h
/ z nr 4 ny nr
Hpy = hyni +hy (SL - 2) Hpp = ha (S:L - 2) + <SL - 2) :

Here nf = 1—n;4, —n;, is the number operator for holes (unoccupied sites) at jsite

To simplify the computations we constrain ourselves to the regioag0, 2), ' € (0, 1).

It is straightforward to extend the analysis below to other ranges of the fields. For later
convenience we define the quantities

[2—2/h’1 for aa, ba [2—2/h’L for aa, ab
S = S =

@)

3
1-2/hy for ab, bb 1-2/hg for ba, bb . ©

In what follows we always assume th&t and S; are non-integer numbers. We note
that for zero boundary fields equation (1) exhibits a glofigl|2) symmetry [16]. In the
present work we perform a detailed study of the boundary effects in the model defined
by (1), paying particular attention to the influence of the boundary fields. After some
technical preliminaries we turn to an analysis of the ground state properties. We find that
the zero-temperature susceptibilities exhibit some interesting singularities, which we argue
to be related to the formation of bound states near the boundaries. We then study the
interaction of elementary excitations with the boundaries by computing the exact boundary
S-matrices. We find that boundary bound states can be formed for sufficiently strong
boundary fields. We concentrate on the case of band fillings close to one (corresponding to
the particularly interesting case of the lightly doped Mott—Hubbard insulator) for which it
is possible to obtain explicit analytical results. However, it is straightforward to extend the
present analysis to arbitrary band-fillings by solving the integral equations (14) numerically
and then integrating (13) numerically.

Taking the rational limit of the Bethe ansatz equations derived in [15] we obtain

Ny+N, Ny
Nap (hi) (e1(h))? = l_[ e2(Ar — Aj)ea(Ax + Aj) 1_[6—1()\]( — Al(l))e_l(kk + Al(l))
J#k =1
4
Ny+N, ( )
1= ™) ] ™ = 1er® + 1)
j=1

wheree, (x) = (x + 3in)/(x — 3in) anda, B = a, b. The boundary terms are given by
Naa(X) =1 Nap (M) = —e_s5, (A) Moa () = —e_s, (1) Mo (A) = Nap (M) Npa (1)

() =1 Sap(A) = —e_g, (A) $pa(A) = —e_s, (A) aa(A) = Lap(A) Cpa(A)
(5)
The restrictions imposed dnand/4’ are chosen such that in all these expressions the label
x Oone, (1) is positive with range0, co). The energy of a state corresponding to a solution
of (4) is (up to an overall constant, which we drop)
N},+Nl

1 H H
E=Eij—271 )L2+H(N¢+Nh)+<,u—2>Nh—<,lL+2>L (6)

j=1 4 j
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whereE,, = hy +hl, Ep, = %(hl + hz) and so on. The reference state used to derive

(4) is the one with up-spin electrons at each site of the lattice. This leads to the constraint
in (4) that the numbeW, of down-spins must be smaller than or equal to the number of
up-spinsN;. Solutions of (4) violating this constraint can lead to vanishing wavefunctions
and must be ignored. Eigenstates of (1) wNh > N, must be constructed by switching

the reference state to the state with down-spin electrons at all sites. This leads to the same
Bethe equations (4) wittv, <> N, and different values for the quantitiess:

2—-2/h} for aa, ba 2-2/h} for aa, ab
$1= SL = (7)
1+2/h for ab, bb 1+2/h, for ba, bb .

Below we will mainly deal with situations for whicly, < N,. However, when considering
excitations over the antiferromagnetic ground states we will also consider thé/casev;,
for which we will make use of the procedure outlined above.

In order to simplify (4) we make use of the ‘string-hypothesisivhich states that for
L — oo all solutions are composed of reﬂ?}”s whereas the\'s are distributed in the
complex plane according to the description

. . 1
,\2~J:AZ+|<n—£ —j) j=1....n (8)

wherex =1, ..., M, labels different ‘strings’ of length. This string hypothesis is naturally
identical to the one for the model with periodic boundary conditions. The imaginary parts
of the A’s can now be eliminated from (4) via (8). Taking the logarithm of the resulting
equations (forM, strings (8) of lengttn and N, AY’s (note thatd >>  nM, = N, + Ny)

we arrive at

i _ (24 1) o (e 12ﬁ(ﬂ W) Oy O+ A
Lm0 ) T 2 G R G

1 N )‘Z —_ 2@ )‘Z + AD
v Ze(V) +9<V)
] n n )

Lo =1....M
ZKij o o=1,..., n
2n 1

1
Tl =70 0080 A 0GP +A) + Ty vy =1, MY

(na)

wherel and J, are integer number$,(x) = 2 arctarg2x),
X X
enm = 1_8mn9 _ 20 - @
e = » <|n—m|>+ (In—m|+2>+

+m<n+;_2>+e<nim) (10)

1 As far as the present work is concerned we do not need to consider complex solutions of the Bethe equations
explicitly and all of our results are really independent of the string hypothesis.




6186 F H L Essler

and the boundary contributions are given by

o —o(
p )= §:9<+121&> ot =0 ()
A

C0=30(irlany)  eme=0(5) )

Kbh><x>—xba><x)+ ey wpp (1) =0

Kpa (1) = ©aa(R) = ©pa (1) + (1)

The ranges of integerfg andJ, are

[e¢]
I}=12...,L+M,—2) minfm, n}M, + N, J,=12,...,N, + N, — 1.

m=1

(12)

There are two differences compared with the case of periodic boundary conditions [17-24]:
first there are additional /L terms (11), and second the integdfsand J, take different
values. The allowed range of the integdfsand J, reflects the fact that all solutions of

(4) with one or more roots; or A,(cl) having vanishing real parts must be excluded as they
lead to vanishing wavefunctions. This restriction leads to constraints on the allowed values
of the integers!” and J,: the I” range from 1 toL + M, — 2)_°_, min{m, n}M,, + Ny,

the solution withI} = 0 being excluded. Similarly, range from 1 tov, + N, —1 and 0

is again excluded.

For zero boundary fieIdSKIC” = 0, w;; = 0) we can construct a complete set df 3
states from the Bethe ansatz states defined in the above way: the model (1) with vanishing
boundary fields igl(1]2)-invariant and all Bethe states are highest-weight states(df2)

[15, 16]. Additional linearly independent eigenstates of (1) can be constructed by acting
with the si(1]2) lowering operators on the highest-weight states. The total number of states
obtained in this way is 8 as can be proved in the same way as for the periedit

chain [17] (the necessary combinatorics are identical). Thus we obtain a complete set of
eigenstates of (1).

For non-vanishing boundary fields the situation is more complicated as!{hg)
symmetry is broken by the boundary conditions. Therefore we cannot use the symmetry
generators to construct additional states from the Bethe ansatz states and are left with the a
priori incomplete set of eigenstates given by (9) and (12). For the present purposes this is
inessential: the ground state is always a Bethe ansatz state, as are the states needed to extract
the boundary-matrices. The ground state and excitations can be constructed from (9) in a
standard way (see, e.g., [25]). The ground state is obtained by filling all allowed vacancies
of integerslo} and J, up to maximal valuedmax and Jmax, Which corresponds to filling
two Fermi seas of rapiditiesl between 0 andd and A(yl> between 0 and3. The actual
values of A, B (and thusinax and Jmay) depend onH and o and are determined below.

We are interested in the case of a small magnetic fléldnd a close to half-filled band
(n = 2In(2)), for which A > 1 andB « 1. As is shown in appendix A, the ground-state

energy per site (for the four possible sets of boundary fields) below half-filling is given by

E — uNe — HS? 1 (B

P @ -2t / A e, (K] (A) + / A e (L)l (1)
L J 4 L B J

1 H )
5L |:€s(0) +u— 5 2Eij:| +O0o(L™) (13)
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wherei, j = a, b and where the dressed energig6.) ande, (1)t are given in terms of the
coupled integral equations

A B
es(A\) = —2ma1 (M) + H — f du az(h — weg(n) + / du ar (A — e ()
—A —B

(14)
H A
(M) = — E +/ du ar(h — p)es(u) .
—A
Herea, (1) = (1/27)n/(A2 + 3n?). For later use we define
I e L exp(—x|w/2)) E 1+x .
Ge(h) = o /_w dow exp( |wx)m = Re(ﬁ(z + m)) (15)

wherex is real and wherg(z) = % [w((1+ 2)/2) — w(z/Z)]. Herey (z) is the digamma
function. The asymptotic behaviour 6f, (1) for large/ > 1 andi > x is

1 x
477 )2
Below we will also need the small-asymptotics ofG1(1), which is given by

G () ~ +00™. (16)

G1(W) = 1 [2In(2) + 22(—1)"(1 — 27 (2n + 1))\2"] A < 1. (17)
27[ n=1

2. Wiener—Hopf analysis for the dressed energies

In this section we analyse the coupled integral equations (14) by means of Wiener—Hopf
techniques [30] (for detailed expositions see, e.g., [29, 31]). As equations (14) are similar
to the analogous equations for the densities in the pertedichain the necessary steps are
the same as in [19]. However, as we will need more explicit answers than are given in [19]
for determining the boundary contribution to the ground-state energy we briefly summarize
the most important steps below. After Fourier-transforming, the first equation of (14) can
be turned into a Wiener—Hopf equation fofA) = &,(A + A):

H o0
yA) = -2nGo(A + A) + > + / dv [G1(A —v) + G1(A + v+ 24)]y(v)
0

+CGo(r + A) (18)

whereC = ffB dv exp(wv)e.(v). Here we have used the fact that> 1 andB « 1 to
approximate

B B
/ dv Go(h — v + A)e.(v) & Go(A + A) / dv exp(mv)e.(v) .
-B -B

The quantityC is determined self-consistently below. Equation (18) can now be solved by
iteration y () = y1(&) + y2(2) + - - -, where

H o0
mm=—h%a+m+§+/ dv G20 — ) y1(v) + CGol + A) (19)
0

y2(A) = / dv G1(A + v + 24) y1(v) +/ dv G1(A —v) y2(v). (20)
0 0

1 These can be shown to be (minus) the energies of the order-one contributions to the elementary charge and spin
excitations [22].
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These equations can be solved in a standard way through a Wiener—Hopf factorization. The
result fory; is obtained in complete analogy with, e.g., the appendix of [28]
~ iHG-(0) 1 . _ . exp(—mA)
¥y () = G (w) {2a)~|—i0 —i2r - CO)G (—m)m + O(exp(—2r A)) .
(21)
Here the Fourier transfory; (w) = f0°° dx y()) explirw) is analytic in the upper half-

plane andG*(w) are analytic functions in the upper/lower half-plane factorizing the kernel
1+exp—|o)) = GH ()G (w)

N2 —jw\ T iw
+ _ —(_ _ v _
@G Ca = rQ —iw/2n) ( 21 ) eXp<2n> ' (22)

The equation fory,(1) is more difficult to solve. They key is to use the fact that
A+ A +2A > 1. Using the asymptotic behaviour (16) 6f (1) in the expression for
the driving termD(L) = f0°° d\' Gi(n + A + 2A)y1()) and then performing a Laplace
transformation we obtain

1 0 3
D) ~ — / dr exp(—2Ax) exp(—|A|x)¥; (ix) | x + T (23)

47 0 12
where the expansion in corresponds to the asymptotic expansiorGafa + A’ + 24). It
is clear that due to the strongly decaying factor @@Ax) the leading contribution to the
integral comes from the smailregion. Inserting the expression (23) for the driving term
into (20) and then following through the same steps as in the analysis foe arrive at
)~ G / ” _ S K GOV ()
Vi (@) ~ G (a))4j_[ ; dr exp(—2Ax) X+ ot ot ix

iHA/?2 /oodx exp(—2Ax)1+(X/Zﬂ)“f](x)—f_'”.
47 Jo w+ix

By means of a similar analysis further correctiongt@) can be determined. As far as the
physical quantities determined below are concerpgdy,, etc, give rise to contributions
much smaller than those due t¢ and y,. We are now in a position to determine the limit
of integrationA as a function of the magnetic field. By definitiep(+A) = 0 = y(0),
which leads to

~ G () (24)

In(/2 2t — C
A _In(H) N (V2r/e (2n — C)) N 1 L 25)
T T 4 In(H)
Using equations (21) and (24) we can now solve the integral equation (14)(for
2a cosh(m L)

B
e.(A) = go(A) + / dv [G1(A —v) + exp(mv)]e.(v) (26)
-B

27
wherea = (/e) exp(—2r A), go(A) = u — 21 G1(1) — 2a coshz 1), and where we have
neglected terms of ordenexp(—2r A)). Here the term proportional t@ originates in the
C-term in (21). Equation (26) can now be solved by iteratiomBag 1 (corresponding to
] =12In(2) — | <« 1) with the result

gc(V) = 0 — (27 + g)G1(A) — 2a cosh(A) + O(jza) + O(i?) + O(ad?) (27)
where

1

_ H? <1 1 ) I
‘T2 "2 T $T 3603

(i +2a)% . (28)
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The boundary of integratio® defined vias.(+B) = 0 in this order is given by
2 [_+ +8In(2) 1
“xe N6

C is determined self-consistently to be2¢ (3) B3. The higher-order (irB) contributions to
&. and B do not contribute to the singularities in the thermodynamic quantities and therefore
have been dropped.

2 (L + 2a)3] . (29)

3. Ground-state properties

We are now in a position to determine bulk and boundary contributions to the energy (13).
The bulk energy per site is found to be

3
ephulk = — I:/.,l, +2In2) +2a +2 |n(2)§()33i| (30)
T
from which we can determine the leading contributions to the zero-temperature
magnetization per site, magnetic susceptibility, density and compressibility close to half-
filling in a weak magnetic field

_ aebulk_ H _ 1 IN(2) [8(ix + 2a)
k= T _2712(1 2In(H)> <1+ P m>+

Y CUE N | L 1,
XH’bUIk_2n’2< 2In(H)> T 471'4< |n(H)> 6¢(3) (i + 2a)

_ Oepuk . 2N [2(i+2a)
Dpyik = o 1 - %3 +

1 0Dpyk  2In(2) 1 n

Xe,bulk = = — e

T DRy on 7 6@+ 2d]
in agreement with the expressions for periodic boundary conditions [19, 20]. We note
that both the magnetic susceptibility and the compressibility diverge when we approach
half-filling.

Contributions to the surface energy, i.e. all terms proportionaltd in (13), can be
divided into boundary-field dependent ong%” and contributions due to the ‘geometry’,

i.e. the openness of the chafi? so that for the four permitted sets of boundary conditions
we can write

Evoundary= E° + E©®P a,f=ab. (32)

The boundary field independent contributions are easily determined

o 1| H In(In(#)) Y - B P
EO _ 2{ 2In(H)<1+ 2|n(H))+“ b \/;(;Hza) + } (33)

We note that for zero bulk magnetic field = 0 and half-filling x = 2In2 we obtain

E° = %n — In2, which is the correct result for the surface energy of the ofenX
Heisenberg chain [13, 35]. By differentiating the surface energy with respect to the
thermodynamic paramete#$ and . we can evaluate the surface contributions to particle
number and magnetization in analogy with, e.g., the treatment of the Kondo model [31]
(see also [1]). It is reasonable to assume that these contributions are concentrated in the

(31)
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boundary regions: e.g., we interpret the surface contribution to the particle number to lead
to a depletion/increase of electrons in the ‘vicinity’ of the boundaries.

The leading contributions to the boundary magnetization, particle number and
susceptibilities due td&° are

o_ 1 In(In(H)) 0o 1 In(In(H))
M"= 41In(H) (1+ 2In(H) >+ X = 4H (In(H))2 <1+ 2In(H) >+

1 2(in + 2a) 4In24+ 7
NO =1 SN T 0 — _ .
2( N %e ) S o @+ 20)

We first note that boundary region exhibits a stronger magnetization compared with the
bulk, i.e. M®/muu = —m?/2H In H, which is much larger than one for the small magnetic
fields considered here. The boundary magnetic susceptibility is seen to diverie—$o0.
Following [1] we interpret this as an indication for the presence of a magnetic bound state
in the boundary region. The magnetic behaviour is similar to the one foXt& spin
chain with an open boundary studied in [1].

The leading contribution to the boundary particle numbé;. iBecause of the constraint
of at most single occupancy at any site this increase in particle number (recall that we
are very close to half-filling) must be spread out over large regions neighbouring the
boundaries. This indicates that boundary effects spread deeply into the bulk. The boundary
compressibility for zero boundary fields is seen to be negative and to diverge as we approach
half-filling. The type of singularity is the same as for the bulk. Combining the results for
magnetization and particle number we see that there is a tendency for spin-up electrons to
get pushed towards the boundary.

The leading-order boundary-field dependent contributi@h¥® are expressed (see
equation (13)) in terms of the quantities

(34)

A B
€(8) = / dv as(v)es(v) €(8) = f dv as(v)e.(v). (35)
—A —

B

where according to (13)
E“P = 1[eg(—S1) + € (—S1)] + Eqp a,f=a,b (36)

for the four possible sets of boundary conditions.

The leading contribution to the quantity(S) can be easily determined for the case
S > B, in which we can expandg(v) in a power series inv and then perform the
elementary integrations using expression (26) £aqv). For S « B we instead expand
e.(v) in an infinite power series (using the fact th@g(v) is a smooth function around
zero), then perform the integrations, resum the result, and then retain only the leading
terms. This results in

4:(3)B% 1 .
_g“() -+ if S> B
T S

€(S) = (37)
28 .
8L(O)+E(/~1+20+)+ if S<B.
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The analogous computations fey(S) are more involved, so that we give a brief summary
of the necessary steps in appendix B. We find the following result for the leading behaviour:

S-1 H

— if S« A
3 H 2 In(H)
&(8) = —Gs(0)(27 +2¢(3) B”) + 5t )
H .
_E_nTSHm(H)Jr... if $>A.

(38)

3.1. Contributions due to small boundary fields of type

The contribution to the boundary energy is given %1%(2/}1 —2) with 2/h — 2> B =
V2(it + 2a)/3¢(3). (This defines what we mean with ‘small’ boundary field). Hérés

a boundary chemical potential. We define the quantit (2/(1 — h))/(it + 2a)/6¢(3),

which in the present case is much smaller than one. We obtain the following contributions
to boundary magnetization/particle number and susceptibilities

M”—H 1 ! N¢ = 2
—7,3( ‘zmm)" B
.1 1 H? 1 I (39)
XH_rr3(1_2|n(H)>U+4n5(1_2|n(H)>U(M+2a)
=2 (i +2a)?
s

We see that a small boundary chemical potential leads essentially to the same type of
divergences as are present in the bulk. As expected electrons get pushed away from the
boundary although the effect is small. By differentiation with respect to the boundary
chemical potential we can evaluate the average number of electrons at the boundary site

2¢(3) B®
7 (1—h)?
where B is given by (29). We see that the electron number is larger than the bulk value.

This is consistent with the above observation that an open boundary without field leads to
an increase in the elctron density in the boundary region.

(ne) =1— h—0 (40)

3.2. Contributions due to large boundary fields of type

Here the boundary chemical potential is taken large, by which we mean tha&/@ — 2 «
B. We again use the notatiean= (h/(1 — h))/(it + 2a)/6¢(3), but nowo > 1. We find

M* = H 1 71 1 !
_4712< _2In(H)>( _m>
2In(2) 2(,u+2a)>+ 1
EE) 2o 1)

.1 1K 1N\
K = g2 < 2In(H)) < ) 7o @) <1_ In(H)) (204
_I_

. 3In2) 1
Xe = SR+ 20) | Ao

(i +2a)7t.
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The magnetization is again proportional # and the magnetic susceptibility can only
diverge at half-filling. The large boundary field yields, however, a contributior+§f

to the boundary particle number, which indicates a strong depletion of electrons in the
boundary region. This is in accordance with the expectation based on a naive analysis of
the Hamiltonian (1) that large boundary chemical potentials (with our choice of sign in (1))
should favour the presence of holes in the boundary region. The compressibility exhibits a
stronger divergence than the bulk if we approach half-filling keepirfixed. The average
electron number at the boundary site is found to be

(ne) =1— %v&@)(ﬂ + 2a) h—1 (42)

which is less than the bulk value.

3.3. Contributions due to large boundary fields of type

Let us first consider the region whekgln H| > 27, which corresponds to the caSex A.
By straightforward differentiation we find

o Lo h—1+HB[ 1+h\ 1]
Ty 4ns‘”(2h) ‘”<2h)
=it () (D)) )
= gpawen 4 [V ) T @ 6720(3)B
b L[, (1R (1] [2it20

v [ G

b_l[w<1+”)_1/,<1>}1
Xe = o 2 2n ) | /6@ (i + 2a)

Thus the boundary field contributes to the singularity in the magnetic susceptibility for
large boundary field&é. Furthermore there is a constant contributieé to the boundary
magnetization, which indicates a surplus of spin-down electrons in the boundary region.
The negative sign stems from the fact that the boundary field is antiparallel to the bulk
magnetic field. The boundary particle number contribution is always small (and leads to a
depletion of the electron number in the boundary region) and the compressibility exhibits
the same type of divergence as the bulk. By differentiating with respect to the boundary
field we can calculate thés: — %nh) at site 1 () for ab (ba) boundary conditions. The
result is

(43)

n" 1 * exp(—w) H
z_ N T _
<S 2 > 2 /0 0 O oo —hw) 22N H (44)

This is always finite in the range @&f considered. To get a rough idea of the contribution

of the integral we note its respective values foe= 1 andh = 2, which arelizn2 and

0.915 97 (Catalan’s constant). The contribution proportionaHtas always small. The
susceptibility is finite, which means that the spins and charges at the boundary itself do not

contribute to the bound state responsible for the singularities in the susceptibilities.
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3.4. Contributions due to small boundary fields of type
Let us now turn to the regioh|In H| « 2 of vanishingly small boundary fields. We find

hin(H) h
MP =0
2n? 2n2H

(45)
M= 2 oy = .
2\ 33 ¢ 2n/6c(3(n+2a)

Note that we cannot tak& — O without taking the boundary field to zero first. Thus the
magnetization is always small. However, the boundary magnetic susceptibility may or may
not diverge forH — 0, depending on how fast we take take the boundary field to zero
compared with the bulk field. The result f¢§° — %nh) is now found to be

< nh>__HIn(H)

- )=
2 22

Xy =

(46)

This is again small and vanishes for half-filling and zero bulk field in accordance with [1].
The corresponding susceptibility is again finite and the spins/charges at the boundary site
do not contribute to the bound state.

4. The boundary S-matrix

In this section we study the effects of the boundary on gapless excitations. For simplicity
we set the bulk magnetic fielH to zero. As the elementary excitations in the bulk are the
same for the periodic and the open chain we begin by giving a thorough discussion of the
interpretation of the spectrum in terms of elementary excitations for the periodic system.
After reviewing the known results of [17, 22] we present a conjecture concerning(th2)
descendants of the holon and spinon states obtained from the Bethe ansatz.

There are two kinds of gapless elementary excitations in the supersymradtricodel,
associated with spin and charge degrees of freedom, respectively. For the periodic chain
they have been extensively studied in [21, 22] (see below for a discussion of(fl2)
structure of the excitations). The spin excitations are called spinons and carr#%pa’nd
zero charge. They are very similar to the spin-waves in the Heisernbgry chain [38].

The charge excitations are called holons and antiholons, carry zero spin and glarge
Holons correspond to ‘particles’ in the charge Fermi sea8fs and are thus associated
with a physical hole, whereas antiholons correspond to ‘holes’ (unoccuptésd) in the
charge Fermi sea. At half-filling only holons can be excited as the charge Fermi sea is
completely empty. The excitation energies are giverrhyr) (14), whereas their physical
momenta (for the periodic chain) are given in terms of the quantjtjegr), which are
solutions of the integral equations

A B

dv az(A — v)p,(v) + / dv ai(A —v) p.(v)

—-B

P, (1) = —6(%) — /
—A

A 47
p.(A) = / dv ai(A —v) p,(v).
—A

The mometum of, e.g., a holon—antiholon excitation is givenPay= p,(A?) — p,.(A")
where A? and A" are the spectral parameters of the holon and antiholon respectively.
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We thus would define the physical holon momentumpa&\?) = p.(A”) — p.(B). At
half-filling the spinon p,) and holon p.) momenta are given by

ps(A) = 2 arctaiexp(w 1)) —
ré-linra+ ;u)> 48)
rad+linra-iin/’

W =2 +iln
Pc —E

The ‘order one’ contributions to the spinon and holon energies at half-filling take the simple
form g;(A) = 27 Go(A) ande. () = 2In(2) — 27 G1(1). The spinon dispersion is thus of
the Faddeev—Takhtajan form(p) = 7 sin(p). The holon dispersion cannot be written in
closed form so easily.

So far we have not discussed the role played byitiH2) symmetry in the classification
of eigenstates. As was shown in [17] all eigenstates of the Hamiltonian obtained from
the Bethe ansatz are highest-weight states ofstli#2) symmetry algebra of the model.
Additional eigenstates of the Hamiltonian can be obtained by acting withsitig2)
generators (recall that we are still discussing the periodic chain). This leads to the picture
put forward in [17] for the structure of excitations over the antiferromagnetic ground state,
i.e. spinon and holon/antiholon excitations are really only the highest-weight stat&&|aj
multiplets. However, all the additional excitations constructed by acting with the symmetry
generators with the exception of the s@ib~(2) descendants can be easily shown to have
a gap proportional to the chemical potential (see also [26]). Therefore we can obtain a
completeset ofgaplessexcitations by taking into account spinon and holon states plus their
spin-SU (2) descendants. However, one can furthermore argue that in the thermodynamic
limit (i.e. if we neglect all finite-size corrections) actually all the gappld|2) descendants
obtained by acting with the symmetry generators can be viewed as being incorporated in
multiparticle spinon and holon/antiholon excitations. Let us first discuss the situation for a
large finite chain. Here a complete set of states is given by first finding all sets of spectral
parameters solving the Bethe equations (4). Each such solution yields the wavefunction of
a highest-weight state o1(1|2) with a given fixed momentum, and a complete set of states
is obtained by taking into account thé(1|2) descendants of the highest-weight state. As
we approach the thermodynamic limit we identify one-parameter families of highest-weight
states as elementary excitations, the free parameter being the rapidity (which is directly
related to the momentum) of the particle. Thus in the thermodynamic limit we are interested
in multiparameter families of excited states and the strict counting of states possible in the
finite volume loses its meaning. This is the reason whytl#?2) descendants of the spinon
and holon/antiholon excitations do not have to be taken into account separately anymore
in the thermodynamic limit. From the algebraic Bethe ansatz construction we know that
the symmetry generators can be represented as the infinite spectral parameter limits of the
elements of the monodromy matrix [17, 27]. On the level of the Bethe ansatz states this
means that the action of the symmetry generators can be implemented by taking a spectral
parameter in an appropriate Bethe ansatz state to infinity. If we therefore tamdities
of ann parameter family of excited (highest-weight) states to infinity we produce-ak
parameter family of exited states mades6fl|2) descendants! This means that the family
of s1(1]2) descendant states does not have to be taken into account separately anymore,
as can equally well be interpreted as ‘sitting on the boundary’ ofntiparametric family
of highest-weight states. In this way we obtain an equivalent yet different ‘quasiparticle
interpretation’ in the spirit of McCot al [33].

As the simplest example let us consider thel|2) descendants of the antiferromagnetic
ground state at half-filling, which sits in a multiplet of dimension four, the other three states



Supersymmetric t—J model with a boundary 6195

being 0,1GS (o =1, }) with momentum zero and energy = 2In2 and Q0 04|GS
with momentum zero and& = 4In2. The stateQ;|GS can be obtained from the spinon—
holon scattering state (or more precisely the two-parametric family of states) by taking
the spectral parameters of both the hola) and the spinoni(") to infinity: indeed the
quantum numbers match arg(A") + e.(A?) — 2In2 and p,(A") + p.(A?) — 0. The
state 04|GS can then be obtained by acting with the spin raising operstorSimilarly
the stateQ, 04+|GS is obtained from the (two-parametric) holon—holon scattering state by
again taking both spectral parameters to infinity.

On the basis of the above discussion we therefore propose that the quasiparticle
interpretation of the order one excitation spectrum in terms of two spinons With@a'and
holon and antiholon excitations put forward in [22] does actually already incorporate the
completes/(1]2) structure. For the half-filled band it is straightforward to sthdwy using
the distribution of integers (12) and the highest-weight theorem that all gapless excitations
are scattering states of two spinons and one holon with the superselection rule that the
number of spinons plus the number of holons is even. Thus the excitation spectrum of the
half-filled /—J model is described by 8U (2) x U(1) scattering theory.

The scattering matrix has been determined by means of Korepin's method [25, 34] in
[21, 22]. At half-filling the spinon-spinors-matrix S(A) and the spinon-holons¢) and
holon—holon {c) scattering phases are given by

1_ 1 1 i
S(A):ir(f i?)\)l”(l-kg/\)( A - i ,P)
rG+2inra-iin\r—-i- a—i @9)
1+ iem T'(5+ 3i0) DA —3id)

exqi‘psc()‘)) = -l exqi(/)cc()‘)) =

1—ie™ ['(3—3i2) T+ 300

wherel and P are the 4x 4 identity and permutation matrices respectively. Below half-
filling the S-matrices are given in terms of the solution of integral equations. This concludes
our discussion of the excitation spectrum of the periadi¢ model. For the case of the
open chain the elementary excitations are identical as are theShukrices. What remains

in order to completely specify the scattering of elementary excitations is to determine the
phase-shifts acquired by the spinons and holons when reflecting from one of the boundaries.
Note that due to the particular form of the boundary interactions (no particle production or
transmutation) it is clear that the boundafymatrices for holons and spinons are diagonal
and thus reduce to phase-shifts for the physical states.

4.1. The boundary S-matrix for the exactly half-filled band

For the case of the exactly half-filled band the boundgayatrix can be determined by the
method introduced by the Miami group in [35] for the case of the %pihXX Heisenberg
chain, which generalizes the methods of Korepin [34] and Anéteal [36, 37]. An
alternative method was introduced in [4] and can be seen to lead to the same results. In
order to determine the boundary phase shifts for spinons and holons we will study the
spinon—holon scattering state. The method of [35] is based on the following quantization
condition for factorized scattering of two particles with rapiditigs on a line of lengthL

(see also [4])

exp(2iLp(A1))S(h1 — A2)K1(A1, h)S(A1 + A2)K1(Ag, hr) =1 (50)

T The computation is analogous to the appendix of [32].
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where p(1) is the expression for the physical momentum of the corresponding (infinite)
periodic systemg$()) are the bulk scattering matrices for scattering of particles 1 and 2, and
Ki1(A, h) are theK -matrices describing scattering of particle 1 with rapidityff a boundary

with boundary fieldh. For the present case of spinon—holon scattering with boundary fields
preserving the twd/ (1) symmetries of spinon and holon numbers this condition turns into

scalar equations for the scattering phases, which after taking the logarithm read

2Lpy(A") + @i (A" — APY + s (A, hy) + oW + AP) + (A" hp) =0 mod 2 1)
2Lp(AP) + @se(A? = A") + Yo (AP hy) + @(A” + M) + (AP, h ) =0 mod 2r .

Here A" and A? are the rapidities of the spinon and holon, respectively. Comparing these
conditions with certain quantities (‘counting functions’) that can be calculated from the
Bethe ansatz solution one can then read off the boundary phasehift85]. Let us

now discuss this program for the spinon—holon scattering state characterized by choosing
My = L/2, N, = 1 in the Bethe equations (9). There %E + 1 vacancies for the integers

1} and thus one hole in the Fermi sea)df We denote the rapidity corresponding to this
hole by". The rapidity corresponding to the holon is denotedMdy The Bethe equations

read

1
1L+1

27 1 )‘«a_)"ﬂ )‘-a+)‘4ﬁ 1 1
=2+ 200w - = 0 0 kP (g
L <+L> () L,; < 2 )+ < 2 >+LK”( :

1 Ag — A hy + A )

+* 9 +9 +9(A'01_A[)+9()\’(X+Ap)

L 2 2
A U 1 1
== O(AP — Ay) + (AP + 1y) + —w;i (AP) — = [O(AP — Ay +6(A7 + 2] .
. L;( )+ O(AY +ha) + Ty (A7) — - [6( ) +6(AP +a1)]

(52)

We note that the ground state at half-filling is identical to the one oftleX Heisenberg
chain and is obtained by filling the rapidities between—oo andooc. In the limit L — oo

the distribution of roots., is described by a single integral equation for the density of roots
ps(A), which is of the same structure as (3.28) of [13]. The main complication is that we
need to take into account all contribution to ordegi.land thus must deal with the fact
that the roots are distributed not betweeno andoo but between two finiteL-dependent
values—A and A. The integral equation is of Wiener—Hopf form but cannot be solved
in a form sufficiently explicit for the purpose of determining the boundary phase-shifts.
Following [35] and [4] we make the assumption that the contributions due to the shift of
integration boundaries will be of higher order irifl as far as the boundary phase-shifts
are concerned and také = oo (the validity of this assumption is discussed at the end of
the section). The integral equation then can be solved by Fourier transform with the result

~ 1 ~ ~
pi(@) = 2Go(@) + {G1(@)[1 + 2cogwr")] + Go(w)[1 + 2CoSwAP)] + fij(w)}  (53)

where éx(w) = exp(—%x|w|)/2 cosf{%a)) and where the contributiong;; due to the
boundary fields are

fap(@) =G _1_g,(w) fra(@) =G _1_, (@)

(54)
fbh(a)) - fah(a))+fha(a)) faa(w) =0.
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For further analysis it is convenient to define the counting functigs) andz. (1)

1r+1
S = o) —— Y 6 0 —iP
400 =5 —0() 2ﬂ;<2)+<2>+h&,(>
1 A=Al A+ Ah
e +6 +00.— AP) +0(A + AP)
2 2 2
1L+1
Z(A)=—Z@(A—A)+9(A+A)+iw~(A)—i[G(A—Ah)+9(A+Ah)]
‘ 2 = . oY 2 '

(55)

Note that for any root, e.g.., of (52) the counting function takes the integer value
zs(Ay) = I, by construction. In the thermodynamic limit/L times the derivative of

7, (1) yields the distribution function of rapidities, (). Straightforward integration of the
density p, (1) yields the following results for the counting functions in the thermodynamic
limit evaluated at the rapidities of the spinon and holon, respectively,

2z, (A" = 2Lp, () + 0, O — AP) + 0 (W + AP) + ¢,(0") =0 mod 2r

(56)
—277:(AP) = 2Lp(A”) + @ (AP — A" + 0 W + AP) + ¢.(A”) =0 mod 2

wherep; (1) are the spinon/holon momenta (48). (1) is the bulk phase-shift for spinon—
holon scattering (49), and

% q - ) ~ .
¢s(2) = —/ % [G1(@)(1 4 exp(—ion)) + Go(w) + fij ()] exp(—iwi)

oo

* dw 1~ ) ~
¢c(M) = /_ g [G1<w><l+exp<—|wx)> — Go(w) + fij(w) exp<—|%|)] (57)

X eXp(—Ia))\) — wij(k) .

The last equalities in (56) hold due to the fact that evaluation of the counting function at

a root of the Bethe equations yields an integer number. From these equations we can now

infer the boundary phase shifts by comparing them with the quantization condition (51).
The scattering of spinons onbatype boundary with boundary fieldis identical to the

one in theXX X spin chain and the results are the same as [35]: the phase for a spinon

with spin-up and rapidity. is given by

T(; — 3i2) T+ 3iA) (2 — h)/4h — 3i0)) T((2+ h)/4h + §iX)

dvai O _ _
T'(;+ 3i0) T(A— 3iA) (2 — h)/4h + 5i0) T((2+ h)/4h — 3i))

(58)

The analogous phase for a spin-down spinon can be obtained in the following way [35]: as
pointed out above switching to the reference state with all spins down leads to a redefinition
of the quantitiesS;. The excitation constructed in a way analogous to the one above over
this reference state has spin quantum nunsbes —%. In order to study negative boundary
fields we need to keep track of the modification in the quantfies which are now always
positive. Repeating the above analysis for this case we obtain the following boundary phase-
shifts for spin-down spinons:

gven _ A TIQ=h)/2h 06

A—i@2—h)/2n (59)
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The phases for scattering of spinonstype boundaries are very similar, e.g.,

ré-linra+iin

gt .
TG+ 30 T - 3ix)

(60)

These expressions can be obtained from itgpe phases by setting the boundary fields
to zero. Physically this means that the spinons do not ‘seeattywe boundary fields at
half-filling.

The phases/@ and ) accumulated by a holon scattering off a boundary of type
or b are given by

U0y _ (1 —i(ha/(1— h))) (r(i +iinyra- gix)>
~\14itr/@—m) ) \ré - liny ra+ din

T((L+ h)/2h — 3ix) T(1/2h + in) <F(j +3inra- ;ix)>

T((1+h)/2h + 5i0) T(1/2h — 5i)\T' G — 3in) T(A+ i) /)

(61)
eilff(b)()hh) —

Thus scattering of holons off the boundaries is influenced by both types of boundary fields.
Let us now investigate the analytic structure of the above phase-shifts. In [38] the physical
strip for the spinon rapidity was defined by the conditidm(i)| < 1 on the basis of
periodicity of the expressions for momentum and energy. We propose the further constraint
on the physical sheet that the imaginary part of the spinon momentum has to be positive
(interpreting the spinons gsarticleg. This implies that the spectral parameters should lie

in the strip 0< Im(X) < 1. It now can be seen that the spinon boundgmatrices have no
poles on this strip (note that fofYe there is no pole at = i(2 — h)/2h). Therefore there

are no boundary bound states in the region of boundary fields we consider here. Let us now
turn to the holon boundary-matrices. The physical strip for the holon rapidity is defined by

0 < Im()) < 1. This needs some explanation. First we impose the constiaitt)| < 1

in order not to have a pole in the holon-holSmmatrix. We know that no pole may be
present on the physical strip because holons and spinons feompleteset of excitations

as can be shown by a counting argument based on the Bethe ansatz solution (see above).
We then impose the constraint () > 0, which corresponds to Ip.(A)) < 0 as holons

are not particles but physical holes. We now see that the holon boundary phaseshifts
have poles on the physical sheet. Before we continue we would like to recall the constraints
h € (0,2) andh’ € (0,1). The holon phase-shifts (61) have poles on the physical sheet for
both a-type andb-type boundary conditions located at the positio¢is— #')/ h')i and i/ h,
respectively. Thus boundary bound states exist in the regibns% andh > 1. We see

that a sufficiently strong boundary field is needed for a bound state to be formed.

Let us now dicuss the validity of our ‘incomplete/ L. analysis of the densities/counting
functions. As pointed out above a complete analytical treatment encounters significant
technical difficulties. However, our results can be checked numerically in the following
way: if the shift in integration boundary would lead to an additional term of ordér, 1
equation (56) should be incorrect to order one. We performed an explicit numerical
evaluation of A? and A" corresponding to integers/n and L/m with n and m fixed
by solving the Bethe equations (52) for chains up to 600 sites. Through insertion of the
numerical values ok and A” into (56) it is then possible to check whether the neglected
finite-size effects contribute to order one in the counting functions. We found no evidence
for any missing contribution to the boundary phase-shifts. We therefore conclude that for
the half-filled band the shift in integration boundary can indeed be neglected.
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4.2. The boundang-matrix for the less than half-filled band

Let us now turn to the case of the less than half-filled band. It is a well known fact that below
half-filling the scattering matrices are not functions of the differences of the rapidities of
the scattering particles any longer. Therefore we need to replace (50) by an appropriately
generalized prescription. This can be accomplished by following through the arguments
used in [4] to derive (50): first of all the scattering considered below is diagonal in the
sense that whenever a spinon or holon bounces off a wall, it merely changes its rapidity
A to —X and acquires a phase-shift. Secondly the wavefunctions of the excitations on our
finite interval with fixed boundary conditions are standing waves of states with opposite
rapidities, which leads to the condition

exp(iLp(r1))S(r1, A2) K1(A1, h1) = eXp(—iLp(A1))S(—A1, A2) K1(—A1, hy) (62)

where p(1) is again the physical momentum of the corresponding (infinite) periodic system
and S(x, v) are the bulk scattering matrices. The extraction of the boundary phase-shifts
from evaluating the counting functions at the spectral parameters of the holons/spinons
is much more problematic than for the half-filled case as now the integration boundary
B corresponding to the charge Fermi sea is finite and the issue of how to treatithe 1
corrections toB arises.

5. Conclusion

In this work we have studied zero-temperature boundary effects in an open supersymmetric
t—J chain with boundary fields. Surface contributions to ground state properties were
evaluated as functions of the boundary fields and the phase-shifts acquired by holons and
spinons scattering off a boundary were determined. It also would be interesting to extend the
analysis to finite temperatures. This appears to be difficult as among other things the usual
expression for the entropy [39] has to be modified in order to project out the spurious states.
The best way to deal with these problems seems to be a thermal Bethe ansatz analysis [40].

The (sub-leading) finite-size corrections to the ground-state energy, and energies of
low-lying excited states, can be evaluated by means of the Euler—Maclaurin sum formula
as well. This was done for the case of the-boundary conditions and zero bulk magnetic
field in [41]. That analysis, which can be straightforwardly extended to the other sets of
integrable boundary conditions considered here, allows to make contact with conformal field
theory in a geometry with boundary [42].
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Appendix A

In this appendix we derive the expression (13) for the ground state energy. The ground state
for given magnetic field? and chemical potentigk is obtained by filling all vacancies for

the integerslj from 1 to Inax = Ny + N, and all vacancies for the integess between 1

and Jmax = N;. Inserting this description into the Bethe equations (9) and then subtracting
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subsequent equations farand«a + 1 andy andy + 1 we obtain the following equations
for the densitie®, (1a) = 1/L(he+1 — Ao) ando.(AY) = 1/L(5), — 2 D):

1
0:(e) = 2a1(ha) = = Y az(ha — hp) + a2(he + Ap)

L4

1 (Ki/j()‘a)

(5 vaen) e

1
+7 2 @0 — AP +arlhe + A7) +
14

1 1
004 = 7 D @O —ha) + @t +ha) + 5 ;05
o

Here/c[j (A andw;. (1) are the derivatives oaf,.(jl) (A) andw;; (1) defined in (11), respectively.
Now we follow [4] and rewrite (Al) in terms of a set of ‘doubled’ variables

—)\.NPLHI,,O[ a=0,...,N¢+Nh

Vg =
)\'W_NL_NA a=N¢+Nh+1,...,2(N¢+Nh)
@ (A2)
_)‘Nhfy y:O,...,Nh
D —
14
)”)/*Nh y=N,+1,...,2N,

where we defined,g = 0 and Aél) = 0. Now we take the thermodynamic limit of the
equations (A1) written in the new variables. This is done by using the Euler—Maclaurin
sum formula to turn sums into integrals (see, e.g, [13, 43, 44]). Care has to be exercised in
order to take into account the fact that terms depending on the spectral parameters located at
zero must be subtracted explicitly. After some manipulations we arrive at following coupled
integral equations for the densitigg(vy) = 1/L(va11—va) @andp.(v(Y) = 1/L(v7(/lil—v)(/1)):

At Bt
ps(A) = 2a1(1) — du az(h — ) pg(p) + du a1(h — ) p ()
A+ —B*
1 K,‘/j )

2

whereA™ and B are the spectral parameters corresponding to the maximal taken integers
1} andJ, plus % Higher order terms in the Euler—Maclaurin expansion have been dropped
as they turn out to not contribute to the surface energy.

The energy per site (6) in the thermodynamic limit can be expressed in terms of the
densitiesp, . asf

E A+ H Bt H
Z —— /_A+ dv [nal(l)) — 2:| ps(V) + /;B+ dv |:g — 4i| pc(V)

1 H H
+(_M_+Eij+2)_,u_. (A4)

AY 1 [
pe) = [ dwanl— 0 o)+ (w’ - al(x))

L 2 4 2

Note that we have divided the bare energies by two due to the fact that we are
working with the densities of the doubled variables. We also explicitly subtracted a term

T We again turn the sums into integrals by means of the Euler—Maclaurin formula.
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(1/L)(n/2+ H/4 — 2) to compensate for the spurious roots at zero. To proceed further we
rewrite (A3) as an operator equation:

~

I-Ky, —Ki , ©
(7)) ()
_Kcs I — ch Pe Pe
where/ is the identity operator and denotes convolution with the appropriate kernel, e.g.,
= +
— K5 * ps |/\ = ffm du ax(0 — ) ps () and where

1 /&) 1 [ (A)
09 =2a;(1) + 7 (Ké,, +a2(,\)> o0 = 7 <wé7, - al(A)> . (AB)

We note that the above integral kernels are all symmetric. In what follows we use the
shorthand notatioriid — K).,pp = p{® for (A5). Let us now define quantities () and
e.(0) through the integral equationsd — K),,e, = £©@, wheree©@ (1) = —2ray(A) + H
ande @) = u— H/2. With x = —u/2— H/4+ E;; + 2 the energy per site can now be
written as

N
% = ;;; /CC]; die &2 () Py (1) — p — g + %
1 Gy ) . =1 0 H
- 5; ¢} G & (1)(id = Ky o TRt
1 (o H
=5 o L du sa(u)péo’(u)—u—iqtz (A7)

a=s,c ¥ —Ca

whereCf = A* andC} = B*. In the thermodynamic limit the ground state is obtained
by minimizing E with respect to the integration boundari¢s and B* (see, e.g., [44]), i.e.
8E/3Cj|c+:c = 0, whereC,; = A, C. = B. From this fact it follows that the integration

boundariesC;" in (A7) can be replaced by, with error of O(L~2), which does not affect

the surface energy we are after. In other words we can rejgldcby C, (up to O(L~2))

due to the fact that the dressed energies vanish at the integration boundaries. This finally
establishes (13).

Appendix B

In this appendix we outline how to evaluate the integral (38). We first note that via Fourier
transform the following equality can be established:

A H 00
/A du as(p) & (W) = =27 Gs(0) + - + 2/0 du [Gris(u+ A) —as(u + A)] y(w)

B
+ / s, (B1)

The last term on the right-hand side is readily evaluated by using the facGi{at) is
smooth around zero and thus can be Taylor expanded

B
/ Gs(wec(n) = —2¢(3)B3G5(0). (82)
_B

The second term on the right-hand side (which will be denote®pjn the following) is
more difficult to treat. In the region wher® < A we can use the asymptotic expansions
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Gris(n+ A) ~ (14 8)/4n(u + A)? andas(u + A) ~ §/27(u + A)? to determine the
leading contribution to the integral. We then Laplace transfoyiiu i A)? and after some
manipulations arrive at

> 1 _ = —Ax S+ (i
/0 dﬂm Y(M)—/(; dr xe My (ix) . (B3)

Due to the strongly decaying factor# the leading contribution to this integral clearly
comes from the region around= 0. Expandingy*(ix) aroundx = O we finally obtain
S—1 H
Ry = —— —— + subleading terms B4
2 > InH + g (B4)

In the regionS > A the above strategy for determinir®p is not applicable. Instead we
Fourier transform and arrive at

1 o0 d e—((S—l)/ZA)w ~ w - w
ko= _27TA/0 “ Coshw/2A) {COS“)(y (A) Y <_A)>

s ()5 ()

We again have a strongly decaying factor in the integrand (recall(thatl)/2A > 1) so
that we can expand the other terms aroune- 0. The problem we run into now is that
the subleading terms in the expansionygf) contribute in an important way. The leading
contribution ofy; to R is found to be (after expanding arounde = 0 only elementary
integrals are encountered)

H HIn(S-1 2HInH
2 'x2 S—1  a(Ss-1)°
The second term is precisely cancelled by the leading contribtuion fgoto R,, whereas
the further terms are all small compared wWit2H In H/7%(S — 1).

(B6)
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