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The supersymmetric t–J model with a boundary

Fabian H L Essler†
Department of Physics, Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP,
UK

Received 16 May 1996

Abstract. An open supersymmetrict–J chain with boundary fields is studied by means of
the Bethe ansatz. Ground state properties for the case of an almost half-filled band and a
bulk magnetic field are determined. Boundary susceptibilities are calculated as functions of the
boundary fields. The effects of the boundary on excitations are investigated by constructing the
exact boundaryS-matrix. From the analytic structure of the boundaryS-matrices one deduces
that holons can form boundary bound states for sufficiently strong boundary fields.

1. Introduction

Recently there has been renewed interest in one-dimensional impurity problems and the
related problem of one-dimensional Luttinger liquids with boundaries [1–8]. The main
focus of these investigations has been the effects of Kondo-like impurities and effects due
to potential scattering in Luttinger liquids. These impurity problems are closely related to
open 1D systems with boundary fields. Some of these systems are integrable and can be
solved exactly by Bethe ansatz [9–14]. In particular, in [1] an anisotropic Heisenberg chain
with open boundary conditions was studied. It is the purpose of the present work extend
the investigation of [1] to the case of thet–J model, which is a Luttinger liquid with both
spin and charge degrees of freedom.

In [15] a trigonometric generalization of the supersymmetrict–J model with open
boundaries was constructed by means of the quantum-inverse scattering method (see, e.g.,
[25]). This generalized the previous work by Förster and Karowski on the quantum-group
invariant case [16]. Here we study this model at the rational point, for which it reduces
to the supersymmetrict–J model with open boundaries and boundary fields. The reason
for this restriction is that the trigonometric model in general leads to a non-Hermitian bulk
Hamiltonian. The only exception is the hyperbolic regime, but there the spin excitations
are gapped and thus irrelevant for the low-energy physics of the model. The Hamiltonian
we consider in the grand canonical ensemble is given by

H = −P
(L−1∑
j=1

∑
σ

c
†
j,σ cj+1,σ + c

†
j+1,σ cj,σ

)
P + 2

L−1∑
j=1

Sj · Sj+1 − njnj+1

4

+
L−1∑
j=1

nj + nj+1 −HSz − µN̂ +Hαβ (1)
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6184 F H L Essler

whereP projects out double occupancies,Sj are spin operators at sitej , nj = c
†
j,↑cj,↑ +

c
†
j,↓cj,↓, and the four possible choices of boundary HamiltoniansHαβ compatible with

integrability and conservation of total spin in thez-direction and particle number are given
by

Haa = h′
1n1 + h′

LnL Hab = h1

(
Sz1 − nh1

2

)
+ h′

LnL

Hba = h′
1n1 + hL

(
SzL − nhL

2

)
Hbb = h1

(
Sz1 − nh1

2

)
+

(
SzL − nhL

2

)
.

(2)

Here nhj = 1 − nj,↑ − nj,↓ is the number operator for holes (unoccupied sites) at sitej .
To simplify the computations we constrain ourselves to the regionsh ∈ (0, 2), h′ ∈ (0, 1).
It is straightforward to extend the analysis below to other ranges of the fields. For later
convenience we define the quantities

S1 =
{

2 − 2/h′
1 for aa, ba

1 − 2/h1 for ab, bb
SL =

{
2 − 2/h′

L for aa, ab

1 − 2/hL for ba, bb .
(3)

In what follows we always assume thatS1 and SL are non-integer numbers. We note
that for zero boundary fields equation (1) exhibits a globalsl(1|2) symmetry [16]. In the
present work we perform a detailed study of the boundary effects in the model defined
by (1), paying particular attention to the influence of the boundary fields. After some
technical preliminaries we turn to an analysis of the ground state properties. We find that
the zero-temperature susceptibilities exhibit some interesting singularities, which we argue
to be related to the formation of bound states near the boundaries. We then study the
interaction of elementary excitations with the boundaries by computing the exact boundary
S-matrices. We find that boundary bound states can be formed for sufficiently strong
boundary fields. We concentrate on the case of band fillings close to one (corresponding to
the particularly interesting case of the lightly doped Mott–Hubbard insulator) for which it
is possible to obtain explicit analytical results. However, it is straightforward to extend the
present analysis to arbitrary band-fillings by solving the integral equations (14) numerically
and then integrating (13) numerically.

Taking the rational limit of the Bethe ansatz equations derived in [15] we obtain

ηαβ(λk) (e1(λk))
2L =

Nh+N↓∏
j 6=k

e2(λk − λj )e2(λk + λj )

Nh∏
l=1

e−1(λk − λ
(1)
l )e−1(λk + λ

(1)
l )

1 = ζαβ(λ
(1)
l )

Nh+N↓∏
j=1

e1(λ
(1)
l − λj )e1(λ

(1)
l + λj )

(4)

whereen(x) = (x + 1
2in)/(x − 1

2in) andα, β = a, b. The boundary terms are given by

ηaa(λ) = 1 ηab(λ) = −e−S1(λ) ηba(λ) = −e−SL(λ) ηbb(λ) = ηab(λ)ηba(λ)

ζbb(λ) = 1 ζab(λ) = −e−SL(λ) ζba(λ) = −e−S1(λ) ζaa(λ) = ζab(λ)ζba(λ) .

(5)

The restrictions imposed onh andh′ are chosen such that in all these expressions the label
x on ex(λ) is positive with range(0,∞). The energy of a state corresponding to a solution
of (4) is (up to an overall constant, which we drop)

E = Eij −
Nh+N↓∑
j=1

1
1
4 + λ2

j

+H(N↓ +Nh)+
(
µ− H

2

)
Nh −

(
µ+ H

2

)
L (6)
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whereEaa = h′
1 + h′

L, Ebb = 1
2(h1 + hL) and so on. The reference state used to derive

(4) is the one with up-spin electrons at each site of the lattice. This leads to the constraint
in (4) that the numberN↓ of down-spins must be smaller than or equal to the number of
up-spinsN↑. Solutions of (4) violating this constraint can lead to vanishing wavefunctions
and must be ignored. Eigenstates of (1) withN↓ > N↑ must be constructed by switching
the reference state to the state with down-spin electrons at all sites. This leads to the same
Bethe equations (4) withN↓ ↔ N↑ and different values for the quantitiesSj :

S1 =
{

2 − 2/h′
1 for aa, ba

1 + 2/h1 for ab, bb
SL =

{
2 − 2/h′

L for aa, ab

1 + 2/hL for ba, bb .
(7)

Below we will mainly deal with situations for whichN↓ 6 N↑. However, when considering
excitations over the antiferromagnetic ground states we will also consider the caseN↓ > N↑,
for which we will make use of the procedure outlined above.

In order to simplify (4) we make use of the ‘string-hypothesis’†, which states that for
L → ∞ all solutions are composed of realλ(1)γ ’s whereas theλ’s are distributed in the
complex plane according to the description

λn,jα = λnα + i

(
n+ 1

2
− j

)
j = 1, . . . , n (8)

whereα = 1, . . . ,Mn labels different ‘strings’ of lengthn. This string hypothesis is naturally
identical to the one for the model with periodic boundary conditions. The imaginary parts
of the λ’s can now be eliminated from (4) via (8). Taking the logarithm of the resulting
equations (forMn strings (8) of lengthn andNh λ(1)’s (note that

∑∞
n=1 nMn = N↓ + Nh)

we arrive at

2π

L
Inα =

(
2 + 1

L

)
θ

(
λnα

n

)
− 1

L

∑
(mβ)

θmn(λ
n
α − λmβ )+ θmn(λ

n
α + λmβ )

+ 1

L

Nh∑
γ=1

θ

(
λnα − λ(1)γ

n

)
+ θ

(
λnα + λ(1)γ

n

)

+ 1

L
κ
(n)
ij (λ

n
α) α = 1, . . . ,Mn

2π

L
Jγ = 1

L

∑
(nα)

θ(λ(1)γ − λnα)+ θ(λ(1)γ + λnα)+ 1

L
ωij (λ

(1)
γ ) γ = 1, . . . ,M(1)

(9)

whereI nα andJγ are integer numbers,θ(x) = 2 arctan(2x),

θn,m(x) = (1 − δm,n)θ

(
x

|n−m|
)

+ 2θ

(
x

|n−m| + 2

)
+ · · ·

+2θ

(
x

n+m− 2

)
+ θ

(
x

n+m

)
(10)

† As far as the present work is concerned we do not need to consider complex solutions of the Bethe equations
explicitly and all of our results are really independent of the string hypothesis.
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and the boundary contributions are given by

κ
(n)
ab (λ) =

n∑
l=1

θ

(
λ

n+ 1 − 2l − S1

)
ωab(λ) = θ

(
λ

−SL

)

κ
(n)
ba (λ) =

n∑
l=1

θ

(
λ

n+ 1 − 2l − SL

)
ωba(λ) = θ

(
λ

−S1

)
κ
(n)
bb (λ) = κ

(n)
ba (λ)+ κ

(n)
ab (λ) ωbb(λ) = 0

κ(n)aa (λ) = 0 ωaa(λ) = ωba(λ)+ ωab(λ) .

(11)

The ranges of integersI nα andJγ are

I nα = 1, 2, . . . , L+Mn − 2
∞∑
m=1

min{m, n}Mm +Nh Jγ = 1, 2, . . . , N↓ +Nh − 1 .

(12)

There are two differences compared with the case of periodic boundary conditions [17–24]:
first there are additional 1/L terms (11), and second the integersI nα andJγ take different
values. The allowed range of the integersI nα andJγ reflects the fact that all solutions of
(4) with one or more rootsλj or λ(1)k having vanishing real parts must be excluded as they
lead to vanishing wavefunctions. This restriction leads to constraints on the allowed values
of the integersI nα andJγ : the I nα range from 1 toL +Mn − 2

∑∞
m=1 min{m, n}Mm + Nh,

the solution withI nα = 0 being excluded. SimilarlyJγ range from 1 toN↓ +Nh − 1 and 0
is again excluded.

For zero boundary fields (κ(n)ij = 0, ωij = 0) we can construct a complete set of 3L

states from the Bethe ansatz states defined in the above way: the model (1) with vanishing
boundary fields issl(1|2)-invariant and all Bethe states are highest-weight states ofsl(1|2)
[15, 16]. Additional linearly independent eigenstates of (1) can be constructed by acting
with the sl(1|2) lowering operators on the highest-weight states. The total number of states
obtained in this way is 3L as can be proved in the same way as for the periodict–J
chain [17] (the necessary combinatorics are identical). Thus we obtain a complete set of
eigenstates of (1).

For non-vanishing boundary fields the situation is more complicated as thesl(1|2)
symmetry is broken by the boundary conditions. Therefore we cannot use the symmetry
generators to construct additional states from the Bethe ansatz states and are left with the a
priori incomplete set of eigenstates given by (9) and (12). For the present purposes this is
inessential: the ground state is always a Bethe ansatz state, as are the states needed to extract
the boundaryS-matrices. The ground state and excitations can be constructed from (9) in a
standard way (see, e.g., [25]). The ground state is obtained by filling all allowed vacancies
of integersI 1

α and Jγ up to maximal valuesImax and Jmax, which corresponds to filling
two Fermi seas of rapiditiesλ1

α between 0 andA and λ(1)γ between 0 andB. The actual
values ofA, B (and thusImax and Jmax) depend onH andµ and are determined below.
We are interested in the case of a small magnetic fieldH and a close to half-filled band
(µ ≈ 2 ln(2)), for whichA � 1 andB � 1. As is shown in appendix A, the ground-state
energy per site (for the four possible sets of boundary fields) below half-filling is given by

E − µNe −HSz

L
= εc(0)− 2µ+ 1

4πL

∫ A

−A
dλ εs(λ)κ

′
ij (λ)+ 1

4πL

∫ B

−B
dλ εc(λ)ω

′
ij (λ)

− 1

2L

[
εs(0)+ µ− H

2
− 2Eij

]
+ o(L−1) (13)
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wherei, j = a, b and where the dressed energiesεc(λ) andεs(λ)† are given in terms of the
coupled integral equations

εs(λ) = −2πa1(λ)+H −
∫ A

−A
dµ a2(λ− µ)εs(µ)+

∫ B

−B
dµ a1(λ− µ)εc(µ)

εc(λ) = µ− H

2
+

∫ A

−A
dµ a1(λ− µ)εs(µ) .

(14)

Herean(λ) = (1/2π)n/(λ2 + 1
4n

2). For later use we define

Gx(λ) = 1

2π

∫ ∞

−∞
dω exp(−iωλ)

exp(−x|ω/2|)
2 cosh(ω/2)

= 1

π
Re

(
β

(
1 + x

2
+ iλ

))
(15)

wherex is real and whereβ(z) = 1
2

[
ψ((1 + z)/2)− ψ(z/2)

]
. Hereψ(z) is the digamma

function. The asymptotic behaviour ofGx(λ) for large l � 1 andλ � x is

Gx(λ) ∼ 1

4π

x

λ2
+ O(λ−4) . (16)

Below we will also need the small-λ asymptotics ofG1(λ), which is given by

G1(λ) = 1

2π

[
2 ln(2)+ 2

∞∑
n=1

(−1)n(1 − 2−2n)ζ(2n+ 1)λ2n

]
|λ| < 1 . (17)

2. Wiener–Hopf analysis for the dressed energies

In this section we analyse the coupled integral equations (14) by means of Wiener–Hopf
techniques [30] (for detailed expositions see, e.g., [29, 31]). As equations (14) are similar
to the analogous equations for the densities in the periodict–J chain the necessary steps are
the same as in [19]. However, as we will need more explicit answers than are given in [19]
for determining the boundary contribution to the ground-state energy we briefly summarize
the most important steps below. After Fourier-transforming, the first equation of (14) can
be turned into a Wiener–Hopf equation fory(λ) = εs(λ+ A):

y(λ) = −2πG0(λ+ A)+ H

2
+

∫ ∞

0
dν [G1(λ− ν)+G1(λ+ ν + 2A)]y(ν)

+CG0(λ+ A) (18)

whereC = ∫ B
−B dν exp(πν)εc(ν). Here we have used the fact thatA � 1 andB � 1 to

approximate ∫ B

−B
dν G0(λ− ν + A)εc(ν) ≈ G0(λ+ A)

∫ B

−B
dν exp(πν)εc(ν) .

The quantityC is determined self-consistently below. Equation (18) can now be solved by
iterationy(λ) = y1(λ)+ y2(λ)+ · · ·, where

y1(λ) = −2πG0(λ+ A)+ H

2
+

∫ ∞

0
dν G1(λ− ν)y1(ν)+ CG0(λ+ A) (19)

y2(λ) =
∫ ∞

0
dν G1(λ+ ν + 2A) y1(ν)+

∫ ∞

0
dν G1(λ− ν) y2(ν) . (20)

† These can be shown to be (minus) the energies of the order-one contributions to the elementary charge and spin
excitations [22].



6188 F H L Essler

These equations can be solved in a standard way through a Wiener–Hopf factorization. The
result fory1 is obtained in complete analogy with, e.g., the appendix of [28]

ỹ+
1 (ω) = G+(ω)

{
iHG−(0)

2

1

ω + i0
− i(2π − C)G−(−iπ)

exp(−πA)
ω + iπ

}
+ O(exp(−2πA)) .

(21)

Here the Fourier transform̃y+
1 (ω) = ∫ ∞

0 dλ y(λ)exp(iλω) is analytic in the upper half-
plane andG±(ω) are analytic functions in the upper/lower half-plane factorizing the kernel
1 + exp(−|ω|) = G+(ω)G−(ω)

G+(ω) = G−(−ω) =
√

2π

0( 1
2 − iω/2π)

(−iω

2π

)−iω/2π

exp

(
iω

2π

)
. (22)

The equation fory2(λ) is more difficult to solve. They key is to use the fact that
λ + λ′ + 2A � 1. Using the asymptotic behaviour (16) ofG1(λ) in the expression for
the driving termD(λ) = ∫ ∞

0 dλ′G1(λ + λ′ + 2A)y1(λ
′) and then performing a Laplace

transformation we obtain

D(λ) ∼ 1

4π

∫ ∞

0
dx exp(−2Ax) exp(−|λ|x)ỹ+

1 (ix)

[
x + x3

12
+ · · ·

]
(23)

where the expansion inx corresponds to the asymptotic expansion ofG1(λ+ λ′ + 2A). It
is clear that due to the strongly decaying factor exp(−2Ax) the leading contribution to the
integral comes from the small-x region. Inserting the expression (23) for the driving term
into (20) and then following through the same steps as in the analysis fory1 we arrive at

ỹ+
2 (ω) ∼ G+(ω)

i

4π

∫ ∞

0
dx exp(−2Ax)

[
x + x3

12
+ · · ·

]
G+(ix)ỹ+

1 (ix)

ω + ix

∼ G+(ω)
iH

√
2

4π

∫ ∞

0
dx exp(−2Ax)

1 + (x/2π) ln(x)+ · · ·
ω + ix

. (24)

By means of a similar analysis further corrections toy(λ) can be determined. As far as the
physical quantities determined below are concernedy3, y4, etc, give rise to contributions
much smaller than those due toy1 andy2. We are now in a position to determine the limit
of integrationA as a function of the magnetic field. By definitionεs(±A) = 0 = y(0),
which leads to

A = − ln(H)

π
+ ln

(√
2π/e (2π − C))

π
+ 1

4π ln(H)
+ · · · . (25)

Using equations (21) and (24) we can now solve the integral equation (14) forεc(λ)

εc(λ) = ε0(λ)+
∫ B

−B
dν [G1(λ− ν)+ 2a cosh(πλ)

2π
exp(πν)]εc(ν) (26)

wherea = (π/e) exp(−2πA), ε0(λ) = µ − 2πG1(λ) − 2a cosh(πλ), and where we have
neglected terms of order o(exp(−2πA)). Here the term proportional toa originates in the
C-term in (21). Equation (26) can now be solved by iteration asB � 1 (corresponding to
|µ̄| = |2 ln(2)− µ| � 1) with the result

εc(λ) = µ− (2π + g)G1(λ)− 2a cosh(πλ)+ O(µ̄a)+ O(µ̄2)+ O(a2) (27)

where

a = H 2

8π2

(
1 − 1

2 ln(H)
+ · · ·

)
g = 8

3

1√
6ζ(3)

(µ̄+ 2a)
3
2 . (28)
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The boundary of integrationB defined viaεc(±B) = 0 in this order is given by

B2 = 2

3ζ(3)

[
µ̄+ 2a + 8 ln(2)

3π

1√
6ζ(3)

(µ̄+ 2a)
3
2

]
. (29)

C is determined self-consistently to be−2ζ(3)B3. The higher-order (inB) contributions to
εc andB do not contribute to the singularities in the thermodynamic quantities and therefore
have been dropped.

3. Ground-state properties

We are now in a position to determine bulk and boundary contributions to the energy (13).
The bulk energy per site is found to be

ebulk = −
[
µ+ 2 ln(2)+ 2a + 2 ln(2)

ζ(3)

π
B3

]
(30)

from which we can determine the leading contributions to the zero-temperature
magnetization per site, magnetic susceptibility, density and compressibility close to half-
filling in a weak magnetic field

mbulk = −∂ebulk

∂H
= H

2π2

(
1 − 1

2 ln(H)

) (
1 + ln(2)

π

√
8(µ̄+ 2a)

3ζ(3)

)
+ · · ·

χH,bulk = 1

2π2

(
1 − 1

2 ln(H)

)
+ 2 ln(2)

π

H 2

4π4

(
1 − 1

ln(H)

)
1√

6ζ(3)(µ̄+ 2a)
+ · · ·

Dbulk = −∂ebulk

∂µ
= 1 − 2 ln(2)

π

√
2(µ̄+ 2a)

3ζ(3)
+ · · ·

χc,bulk = 1

D2
bulk

∂Dbulk

∂µ
= 2 ln(2)

π

1√
6ζ(3)[µ̄+ 2a]

+ · · ·

(31)

in agreement with the expressions for periodic boundary conditions [19, 20]. We note
that both the magnetic susceptibility and the compressibility diverge when we approach
half-filling.

Contributions to the surface energy, i.e. all terms proportional toL−1 in (13), can be
divided into boundary-field dependent onesE(αβ) and contributions due to the ‘geometry’,
i.e. the openness of the chainE0 so that for the four permitted sets of boundary conditions
we can write

Eboundary= E0 + E(αβ) α, β = a, b . (32)

The boundary field independent contributions are easily determined

E0 = −1

2

{
− H

2 ln(H)

(
1 + ln(ln(H))

2 ln(H)

)
+ µ− π −

√
8

27ζ(3)
(µ̄+ 2a)

3
2 + · · ·

}
. (33)

We note that for zero bulk magnetic fieldH = 0 and half-filling µ = 2 ln 2 we obtain
E0 = 1

2π − ln 2, which is the correct result for the surface energy of the openXXX

Heisenberg chain [13, 35]. By differentiating the surface energy with respect to the
thermodynamic parametersH andµ we can evaluate the surface contributions to particle
number and magnetization in analogy with, e.g., the treatment of the Kondo model [31]
(see also [1]). It is reasonable to assume that these contributions are concentrated in the
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boundary regions: e.g., we interpret the surface contribution to the particle number to lead
to a depletion/increase of electrons in the ‘vicinity’ of the boundaries.

The leading contributions to the boundary magnetization, particle number and
susceptibilities due toE0 are

M0 = − 1

4 ln(H)

(
1 + ln(ln(H))

2 ln(H)

)
+ · · · χ0

H = 1

4H(ln(H))2

(
1 + ln(ln(H))

2 ln(H)

)
+ · · ·

N0 = 1

2

(
1 +

√
2(µ̄+ 2a)

3ζ(3)

)
χ0
c = − 4 ln 2+ π

2π
√

6ζ(3)(µ̄+ 2a)
.

(34)

We first note that boundary region exhibits a stronger magnetization compared with the
bulk, i.e.M0/mbulk = −π2/2H lnH , which is much larger than one for the small magnetic
fields considered here. The boundary magnetic susceptibility is seen to diverge forH → 0.
Following [1] we interpret this as an indication for the presence of a magnetic bound state
in the boundary region. The magnetic behaviour is similar to the one for theXXZ spin
chain with an open boundary studied in [1].

The leading contribution to the boundary particle number is1
2. Because of the constraint

of at most single occupancy at any site this increase in particle number (recall that we
are very close to half-filling) must be spread out over large regions neighbouring the
boundaries. This indicates that boundary effects spread deeply into the bulk. The boundary
compressibility for zero boundary fields is seen to be negative and to diverge as we approach
half-filling. The type of singularity is the same as for the bulk. Combining the results for
magnetization and particle number we see that there is a tendency for spin-up electrons to
get pushed towards the boundary.

The leading-order boundary-field dependent contributionsE(αβ) are expressed (see
equation (13)) in terms of the quantities

εb(S) =
∫ A

−A
dν aS(ν)εs(ν) εa(S) =

∫ B

−B
dν aS(ν)εc(ν) . (35)

where according to (13)

E(αβ) = 1
2

[
εβ(−S1)+ εα(−SL)

] + Eαβ α, β = a, b (36)

for the four possible sets of boundary conditions.
The leading contribution to the quantityεa(S) can be easily determined for the case

S � B, in which we can expandaS(ν) in a power series inν and then perform the
elementary integrations using expression (26) forεc(ν). For S � B we instead expand
εc(ν) in an infinite power series (using the fact thatG1(ν) is a smooth function around
zero), then perform the integrations, resum the result, and then retain only the leading
terms. This results in

εa(S) =


−4ζ(3)B3

π

1

S
+ · · · if S � B

εc(0)+ 2S

πB
(µ̄+ 2a + · · ·)+ · · · if S � B .

(37)
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The analogous computations forεb(S) are more involved, so that we give a brief summary
of the necessary steps in appendix B. We find the following result for the leading behaviour:

εb(S) = −GS(0)(2π + 2ζ(3)B3)+ H

2
+


S − 1

2

H

ln(H)
+ · · · if S � A

−H
2

− 2

π2S
H ln(H)+ · · · if S � A .

(38)

3.1. Contributions due to small boundary fields of typea

The contribution to the boundary energy is given by1
2εa(2/h − 2) with 2/h − 2 � B =√

2(µ̄+ 2a)/3ζ(3). (This defines what we mean with ‘small’ boundary field). Hereh is
a boundary chemical potential. We define the quantityσ = (h/(1 − h))

√
(µ̄+ 2a)/6ζ(3),

which in the present case is much smaller than one. We obtain the following contributions
to boundary magnetization/particle number and susceptibilities

Ma = H

π3

(
1 − 1

2 ln(H)

)
σ Na = − 2

π
σ

χaH = 1

π3

(
1 − 1

2 ln(H)

)
σ + H 2

4π5

(
1 − 1

2 ln(H)

)
σ(µ̄+ 2a)−1

χac = σ

π
(µ̄+ 2a)−1 .

(39)

We see that a small boundary chemical potential leads essentially to the same type of
divergences as are present in the bulk. As expected electrons get pushed away from the
boundary although the effect is small. By differentiation with respect to the boundary
chemical potential we can evaluate the average number of electrons at the boundary site

〈ne〉 = 1 − 2ζ(3)

π

B3

(1 − h)2
h → 0 (40)

whereB is given by (29). We see that the electron number is larger than the bulk value.
This is consistent with the above observation that an open boundary without field leads to
an increase in the elctron density in the boundary region.

3.2. Contributions due to large boundary fields of typea

Here the boundary chemical potential is taken large, by which we mean that 0< 2/h−2 �
B. We again use the notationσ = (h/(1− h))

√
(µ̄+ 2a)/6ζ(3), but nowσ � 1. We find

Ma = H

4π2

(
1 − 1

2 ln(H)

) (
1 − 1

πσ

)

Na = −1

2

(
1 + 2 ln(2)

π

√
2(µ̄+ 2a)

3ζ(3)

)
+ 1

2πσ

χaH = 1

4π2

(
1 − 1

2 ln(H)

) (
1 − 1

πσ

)
+ 1

πσ

H 2

(2π)4

(
1 − 1

ln(H)

)
(µ̄+ 2a)−1 + · · ·

χac = 3 ln(2)

π
√

6ζ(3)(µ̄+ 2a)
+ 1

4πσ
(µ̄+ 2a)−1 .

(41)
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The magnetization is again proportional toH and the magnetic susceptibility can only
diverge at half-filling. The large boundary field yields, however, a contribution of− 1

2
to the boundary particle number, which indicates a strong depletion of electrons in the
boundary region. This is in accordance with the expectation based on a naive analysis of
the Hamiltonian (1) that large boundary chemical potentials (with our choice of sign in (1))
should favour the presence of holes in the boundary region. The compressibility exhibits a
stronger divergence than the bulk if we approach half-filling keepingσ fixed. The average
electron number at the boundary site is found to be

〈ne〉 = 1 − 2

πh2

√
6ζ(3)(µ̄+ 2a) h → 1 (42)

which is less than the bulk value.

3.3. Contributions due to large boundary fields of typeb

Let us first consider the region whereh| lnH | � 2π , which corresponds to the caseS � A.
By straightforward differentiation we find

Mb = −1

4
+ h− 1

2h lnH
+ HB

4π3

[
ψ

(
1 + h

2h

)
− ψ

(
1

2h

)]
χbH = 1 − h

2hH ln2H
+ 1

4π3

[
ψ

(
1 + h

2h

)
− ψ

(
1

2h

)] (
B + H 2

6π2ζ(3)B

)

Nb = − 1

2π

[
ψ

(
1 + h

2h

)
− ψ

(
1

2h

)] √
2(µ̄+ 2a)

3ζ(3)

χbc = 1

2π

[
ψ

(
1 + h

2h

)
− ψ

(
1

2h

)]
1√

6ζ(3)(µ̄+ 2a)
.

(43)

Thus the boundary field contributes to the singularity in the magnetic susceptibility for
large boundary fieldsh. Furthermore there is a constant contribution− 1

4 to the boundary
magnetization, which indicates a surplus of spin-down electrons in the boundary region.
The negative sign stems from the fact that the boundary field is antiparallel to the bulk
magnetic field. The boundary particle number contribution is always small (and leads to a
depletion of the electron number in the boundary region) and the compressibility exhibits
the same type of divergence as the bulk. By differentiating with respect to the boundary
field we can calculate the〈Sz − 1

2n
h〉 at site 1 (L) for ab (ba) boundary conditions. The

result is 〈
Sz − nh

2

〉
= 1

2
−

∫ ∞

0
dω ω

exp(−ω)
1 + exp(−hω) − H

2h2 lnH
. (44)

This is always finite in the range ofh considered. To get a rough idea of the contribution
of the integral we note its respective values forh = 1 andh = 2, which are 1

12π
2 and

0.915 97 (Catalan’s constant). The contribution proportional toH is always small. The
susceptibility is finite, which means that the spins and charges at the boundary itself do not
contribute to the bound state responsible for the singularities in the susceptibilities.
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3.4. Contributions due to small boundary fields of typeb

Let us now turn to the regionh| lnH | � 2π of vanishingly small boundary fields. We find

Mb = h ln(H)

2π2
χbH = h

2π2H

Nb = − h

2π

√
2

3ζ(3)
(µ̄+ 2a) χbc = h

2π
√

6ζ(3)(µ̄+ 2a)
.

(45)

Note that we cannot takeH → 0 without taking the boundary field to zero first. Thus the
magnetization is always small. However, the boundary magnetic susceptibility may or may
not diverge forH → 0, depending on how fast we take take the boundary field to zero
compared with the bulk field. The result for〈Sz − 1

2n
h〉 is now found to be〈

Sz − nh

2

〉
= −H ln(H)

2π2
. (46)

This is again small and vanishes for half-filling and zero bulk field in accordance with [1].
The corresponding susceptibility is again finite and the spins/charges at the boundary site
do not contribute to the bound state.

4. The boundary S-matrix

In this section we study the effects of the boundary on gapless excitations. For simplicity
we set the bulk magnetic fieldH to zero. As the elementary excitations in the bulk are the
same for the periodic and the open chain we begin by giving a thorough discussion of the
interpretation of the spectrum in terms of elementary excitations for the periodic system.
After reviewing the known results of [17, 22] we present a conjecture concerning thesl(1|2)
descendants of the holon and spinon states obtained from the Bethe ansatz.

There are two kinds of gapless elementary excitations in the supersymmetrict–J model,
associated with spin and charge degrees of freedom, respectively. For the periodic chain
they have been extensively studied in [21, 22] (see below for a discussion of thesl(1|2)
structure of the excitations). The spin excitations are called spinons and carry spin± 1

2 and
zero charge. They are very similar to the spin-waves in the HeisenbergXXX chain [38].
The charge excitations are called holons and antiholons, carry zero spin and charge∓e.
Holons correspond to ‘particles’ in the charge Fermi sea ofλ(1)’s and are thus associated
with a physical hole, whereas antiholons correspond to ‘holes’ (unoccupiedλ(1)’s) in the
charge Fermi sea. At half-filling only holons can be excited as the charge Fermi sea is
completely empty. The excitation energies are given byεs,c(λ) (14), whereas their physical
momenta (for the periodic chain) are given in terms of the quantitiesps,c(λ), which are
solutions of the integral equations

ps(λ) = −θ(λ)−
∫ A

−A
dν a2(λ− ν)ps(ν)+

∫ B

−B
dν a1(λ− ν) pc(ν)

pc(λ) =
∫ A

−A
dν a1(λ− ν) ps(ν) .

(47)

The mometum of, e.g., a holon–antiholon excitation is given byPcc̄ = pc(3
p) − pc(3

h)

where3p and 3h are the spectral parameters of the holon and antiholon respectively.
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We thus would define the physical holon momentum aspc(3
p) = pc(3

p) − pc(B). At
half-filling the spinon (ps) and holon (pc) momenta are given by

ps(λ) = 2 arctan(exp(πλ))− π

pc(λ) = π

2
+ i ln

(
0( 1

2 − 1
2iλ)

0( 1
2 + 1

2iλ)

0(1 + 1
2iλ)

0(1 − 1
2iλ)

)
.

(48)

The ‘order one’ contributions to the spinon and holon energies at half-filling take the simple
form εs(λ) = 2πG0(λ) and εc(λ) = 2 ln(2) − 2πG1(λ). The spinon dispersion is thus of
the Faddeev–Takhtajan formεs(p) = π sin(p). The holon dispersion cannot be written in
closed form so easily.

So far we have not discussed the role played by thesl(1|2) symmetry in the classification
of eigenstates. As was shown in [17] all eigenstates of the Hamiltonian obtained from
the Bethe ansatz are highest-weight states of thesl(1|2) symmetry algebra of the model.
Additional eigenstates of the Hamiltonian can be obtained by acting with thesl(1|2)
generators (recall that we are still discussing the periodic chain). This leads to the picture
put forward in [17] for the structure of excitations over the antiferromagnetic ground state,
i.e. spinon and holon/antiholon excitations are really only the highest-weight states ofsl(1|2)
multiplets. However, all the additional excitations constructed by acting with the symmetry
generators with the exception of the spin-SU(2) descendants can be easily shown to have
a gap proportional to the chemical potential (see also [26]). Therefore we can obtain a
completeset ofgaplessexcitations by taking into account spinon and holon states plus their
spin-SU(2) descendants. However, one can furthermore argue that in the thermodynamic
limit (i.e. if we neglect all finite-size corrections) actually all the gappedsl(1|2) descendants
obtained by acting with the symmetry generators can be viewed as being incorporated in
multiparticle spinon and holon/antiholon excitations. Let us first discuss the situation for a
large finite chain. Here a complete set of states is given by first finding all sets of spectral
parameters solving the Bethe equations (4). Each such solution yields the wavefunction of
a highest-weight state ofsl(1|2) with a given fixed momentum, and a complete set of states
is obtained by taking into account thesl(1|2) descendants of the highest-weight state. As
we approach the thermodynamic limit we identify one-parameter families of highest-weight
states as elementary excitations, the free parameter being the rapidity (which is directly
related to the momentum) of the particle. Thus in the thermodynamic limit we are interested
in multiparameter families of excited states and the strict counting of states possible in the
finite volume loses its meaning. This is the reason why thesl(1|2) descendants of the spinon
and holon/antiholon excitations do not have to be taken into account separately anymore
in the thermodynamic limit. From the algebraic Bethe ansatz construction we know that
the symmetry generators can be represented as the infinite spectral parameter limits of the
elements of the monodromy matrix [17, 27]. On the level of the Bethe ansatz states this
means that the action of the symmetry generators can be implemented by taking a spectral
parameter in an appropriate Bethe ansatz state to infinity. If we therefore takek rapidities
of ann parameter family of excited (highest-weight) states to infinity we produce ann− k

parameter family of exited states made ofsl(1|2) descendants! This means that the family
of sl(1|2) descendant states does not have to be taken into account separately anymore,
as can equally well be interpreted as ‘sitting on the boundary’ of then-parametric family
of highest-weight states. In this way we obtain an equivalent yet different ‘quasiparticle
interpretation’ in the spirit of McCoyet al [33].

As the simplest example let us consider thesl(1|2) descendants of the antiferromagnetic
ground state at half-filling, which sits in a multiplet of dimension four, the other three states
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beingQσ |GS〉 (σ =↑,↓) with momentum zero and energyE = 2 ln 2 andQ↓Q↑|GS〉
with momentum zero andE = 4 ln 2. The stateQ↓|GS〉 can be obtained from the spinon–
holon scattering state (or more precisely the two-parametric family of states) by taking
the spectral parameters of both the holon (3p) and the spinon (λh) to infinity: indeed the
quantum numbers match andεs(λh) + εc(3

p) → 2 ln 2 andps(λh) + pc(3
p) → 0. The

stateQ↑|GS〉 can then be obtained by acting with the spin raising operatorS†. Similarly
the stateQ↓Q↑|GS〉 is obtained from the (two-parametric) holon–holon scattering state by
again taking both spectral parameters to infinity.

On the basis of the above discussion we therefore propose that the quasiparticle
interpretation of the order one excitation spectrum in terms of two spinons with spin± 1

2 and
holon and antiholon excitations put forward in [22] does actually already incorporate the
completesl(1|2) structure. For the half-filled band it is straightforward to show† by using
the distribution of integers (12) and the highest-weight theorem that all gapless excitations
are scattering states of two spinons and one holon with the superselection rule that the
number of spinons plus the number of holons is even. Thus the excitation spectrum of the
half-filled t–J model is described by aSU(2)× U(1) scattering theory.

The scattering matrix has been determined by means of Korepin’s method [25, 34] in
[21, 22]. At half-filling the spinon-spinonS-matrix S(λ) and the spinon–holon (sc) and
holon–holon (cc) scattering phases are given by

S(λ) = i
0( 1

2 − 1
2iλ)

0( 1
2 + 1

2iλ)

0(1 + 1
2iλ)

0(1 − 1
2iλ)

(
λ

λ− i
I − i

λ− i
P

)

exp(iϕsc(λ)) = −i
1 + ieπλ

1 − ieπλ
exp(iϕcc(λ)) = 0( 1

2 + 1
2iλ)

0( 1
2 − 1

2iλ)

0(1 − 1
2iλ)

0(1 + 1
2iλ)

(49)

whereI andP are the 4× 4 identity and permutation matrices respectively. Below half-
filling the S-matrices are given in terms of the solution of integral equations. This concludes
our discussion of the excitation spectrum of the periodict–J model. For the case of the
open chain the elementary excitations are identical as are the bulkS-matrices. What remains
in order to completely specify the scattering of elementary excitations is to determine the
phase-shifts acquired by the spinons and holons when reflecting from one of the boundaries.
Note that due to the particular form of the boundary interactions (no particle production or
transmutation) it is clear that the boundaryS-matrices for holons and spinons are diagonal
and thus reduce to phase-shifts for the physical states.

4.1. The boundary S-matrix for the exactly half-filled band

For the case of the exactly half-filled band the boundaryS-matrix can be determined by the
method introduced by the Miami group in [35] for the case of the spin1

2 XXX Heisenberg
chain, which generalizes the methods of Korepin [34] and Andreiet al [36, 37]. An
alternative method was introduced in [4] and can be seen to lead to the same results. In
order to determine the boundary phase shifts for spinons and holons we will study the
spinon–holon scattering state. The method of [35] is based on the following quantization
condition for factorized scattering of two particles with rapiditiesλ1,2 on a line of lengthL
(see also [4])

exp(2iLp(λ1))S(λ1 − λ2)K1(λ1, h1)S(λ1 + λ2)K1(λ1, hL) = 1 (50)

† The computation is analogous to the appendix of [32].
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wherep(λ) is the expression for the physical momentum of the corresponding (infinite)
periodic system,S(λ) are the bulk scattering matrices for scattering of particles 1 and 2, and
K1(λ, h) are theK-matrices describing scattering of particle 1 with rapidityλ off a boundary
with boundary fieldh. For the present case of spinon–holon scattering with boundary fields
preserving the twoU(1) symmetries of spinon and holon numbers this condition turns into
scalar equations for the scattering phases, which after taking the logarithm read

2Lps(λ
h)+ ϕsc(λ

h −3p)+ ψs(λ
h, h1)+ ϕ(λh +3p)+ ψs(λ

h, hL) = 0 mod 2π

2Lpc(3
p)+ ϕsc(3

p − λh)+ ψc(3
p, h1)+ ϕ(3p + λh)+ ψc(3

p, hL) = 0 mod 2π .
(51)

Hereλh and3p are the rapidities of the spinon and holon, respectively. Comparing these
conditions with certain quantities (‘counting functions’) that can be calculated from the
Bethe ansatz solution one can then read off the boundary phase-shiftsψs,c [35]. Let us
now discuss this program for the spinon–holon scattering state characterized by choosing
M1 = L/2, Nh = 1 in the Bethe equations (9). There are1

2L+ 1 vacancies for the integers
I 1
α and thus one hole in the Fermi sea ofλ1

α. We denote the rapidity corresponding to this
hole byλh. The rapidity corresponding to the holon is denoted by3p. The Bethe equations
read

2π

L
Iα =

(
2 + 1

L

)
θ(λα)− 1

L

1
2L+1∑
β=1

θ

(
λα − λβ

2

)
+ θ

(
λα + λβ

2

)
+ 1

L
κ
(1)
ij (λα)

+ 1

L

[
θ

(
λα − λh

2

)
+ θ

(
λα + λh

2

)
+ θ(λα −3p)+ θ(λα +3p)

]

2π

L
J = 1

L

1
2L+1∑
α=1

θ(3p − λα)+ θ(3p + λα)+ 1

L
ωij (3

p)− 1

L

[
θ(3p − λh)+ θ(3p + λh)

]
.

(52)

We note that the ground state at half-filling is identical to the one of theXXX Heisenberg
chain and is obtained by filling the rapiditiesλ1

α between−∞ and∞. In the limit L → ∞
the distribution of rootsλα is described by a single integral equation for the density of roots
ρs(λ), which is of the same structure as (3.28) of [13]. The main complication is that we
need to take into account all contribution to order 1/L and thus must deal with the fact
that the roots are distributed not between−∞ and∞ but between two finite,L-dependent
values−A andA. The integral equation is of Wiener–Hopf form but cannot be solved
in a form sufficiently explicit for the purpose of determining the boundary phase-shifts.
Following [35] and [4] we make the assumption that the contributions due to the shift of
integration boundaries will be of higher order in 1/L as far as the boundary phase-shifts
are concerned and takeA = ∞ (the validity of this assumption is discussed at the end of
the section). The integral equation then can be solved by Fourier transform with the result

ρ̃s(ω) = 2G̃0(ω)+ 1

L

{
G̃1(ω)[1 + 2 cos(ωλh)] + G̃0(ω)[1 + 2 cos(ω3p)] + fij (ω)

}
(53)

where G̃x(ω) = exp(− 1
2x|ω|)/2 cosh( 1

2ω) and where the contributionsfij due to the
boundary fields are

fab(ω) = G̃−1−S1(ω) fba(ω) = G̃−1−SL(ω)

fbb(ω) = fab(ω)+ fba(ω) faa(ω) = 0 .
(54)
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For further analysis it is convenient to define the counting functionszs(λ) andzc(λ)

zs(λ) = 2L+ 1

2π
θ(λ)− 1

2π

1
2L+1∑
β=1

θ

(
λ− λβ

2

)
+ θ

(
λ+ λβ

2

)
+ 1

2π
κ
(1)
ij (λ)

+ 1

2π

[
θ

(
λ− λh

2

)
+ θ

(
λ+ λh

2

)
+ θ(λ−3p)+ θ(λ+3p)

]

zc(3) = 1

2π

1
2L+1∑
α=1

θ(3− λα)+ θ(3+ λα)+ 1

2π
ωij (3)− 1

2π

[
θ(3− λh)+ θ(3+ λh)

]
.

(55)

Note that for any root, e.g.,λα of (52) the counting function takes the integer value
zs(λα) = Iα by construction. In the thermodynamic limit 1/L times the derivative of
zs(λ) yields the distribution function of rapiditiesρs(λ). Straightforward integration of the
densityρs(λ) yields the following results for the counting functions in the thermodynamic
limit evaluated at the rapidities of the spinon and holon, respectively,

2πzs(λ
h) = 2Lps(λ

h)+ ϕsc(λ
h −3p)+ ϕsc(λ

h +3p)+ φs(λ
h) = 0 mod 2π

−2πzc(3
p) = 2Lpc(3

p)+ ϕsc(3
p − λh)+ ϕsc(λ

h +3p)+ φc(3
p) = 0 mod 2π

(56)

whereps,c(λ) are the spinon/holon momenta (48),ϕsc(λ) is the bulk phase-shift for spinon–
holon scattering (49), and

φs(λ) = −
∫ ∞

−∞

dω

iω

[
G̃1(ω)(1 + exp(−iωλ))+ G̃0(ω)+ fij (ω)

]
exp(−iωλ)

φc(λ) =
∫ ∞

−∞

dω

iω

[
G̃1(ω)(1 + exp(−iωλ))− G̃0(ω)+ fij (ω) exp

(
−|ω

2
|
)]

× exp(−iωλ)− ωij (λ) .

(57)

The last equalities in (56) hold due to the fact that evaluation of the counting function at
a root of the Bethe equations yields an integer number. From these equations we can now
infer the boundary phase shifts by comparing them with the quantization condition (51).

The scattering of spinons on ab-type boundary with boundary fieldh is identical to the
one in theXXX spin chain and the results are the same as [35]: the phase for a spinon
with spin-up and rapidityλ is given by

eiψ(b)s,↑(λ,h) = 0( 1
4 − 1

2iλ)

0( 1
4 + 1

2iλ)

0(1 + 1
2iλ)

0(1 − 1
2iλ)

0((2 − h)/4h− 1
2iλ)

0((2 − h)/4h+ 1
2iλ)

0((2 + h)/4h+ 1
2iλ)

0((2 + h)/4h− 1
2iλ)

. (58)

The analogous phase for a spin-down spinon can be obtained in the following way [35]: as
pointed out above switching to the reference state with all spins down leads to a redefinition
of the quantitiesSj . The excitation constructed in a way analogous to the one above over
this reference state has spin quantum numberSz = − 1

2. In order to study negative boundary
fields we need to keep track of the modification in the quantitiesS1,L, which are now always
positive. Repeating the above analysis for this case we obtain the following boundary phase-
shifts for spin-down spinons:

eiψ(b)s,↓(λ,h) = −λ+ i(2 − h)/2h

λ− i(2 − h)/2h
eiψ(b)s,↑(λ,h) . (59)
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The phases for scattering of spinons ona-type boundaries are very similar, e.g.,

eiψs↑(λ,h
′) = 0( 1

4 − 1
2iλ)

0( 1
4 + 1

2iλ)

0(1 + 1
2iλ)

0(1 − 1
2iλ)

. (60)

These expressions can be obtained from theb-type phases by setting the boundary fields
to zero. Physically this means that the spinons do not ‘see’ thea-type boundary fields at
half-filling.

The phasesψ(a)
c andψ(b)

c accumulated by a holon scattering off a boundary of typea

or b are given by

eiψ(a)c (λ,h) =
(

1 − i(hλ/(1 − h))

1 + i(hλ/(1 − h))

) (
0( 3

4 + 1
2iλ)

0( 3
4 − 1

2iλ)

0(1 − 1
2iλ)

0(1 + 1
2iλ)

)

eiψ(b)(λ,h) = 0((1 + h)/2h− 1
2iλ)

0((1 + h)/2h+ 1
2iλ)

0(1/2h+ 1
2iλ)

0(1/2h− 1
2iλ)

(
0( 3

4 + 1
2iλ)

0( 3
4 − 1

2iλ)

0(1 − 1
2iλ)

0(1 + 1
2iλ)

)
.

(61)

Thus scattering of holons off the boundaries is influenced by both types of boundary fields.
Let us now investigate the analytic structure of the above phase-shifts. In [38] the physical
strip for the spinon rapidity was defined by the condition| Im(λ)| < 1 on the basis of
periodicity of the expressions for momentum and energy. We propose the further constraint
on the physical sheet that the imaginary part of the spinon momentum has to be positive
(interpreting the spinons asparticles). This implies that the spectral parameters should lie
in the strip 06 Im(λ) < 1. It now can be seen that the spinon boundaryS-matrices have no
poles on this strip (note that for eiψs↓ there is no pole atλ = i(2 − h)/2h). Therefore there
are no boundary bound states in the region of boundary fields we consider here. Let us now
turn to the holon boundaryS-matrices. The physical strip for the holon rapidity is defined by
0 6 Im(λ) < 1. This needs some explanation. First we impose the constraint| Im(λ)| < 1
in order not to have a pole in the holon–holonS-matrix. We know that no pole may be
present on the physical strip because holons and spinons form acompleteset of excitations
as can be shown by a counting argument based on the Bethe ansatz solution (see above).
We then impose the constraint Im(λ) > 0, which corresponds to Im(pc(λ)) 6 0 as holons
are not particles but physical holes. We now see that the holon boundary phase-shiftscan
have poles on the physical sheet. Before we continue we would like to recall the constraints
h ∈ (0, 2) andh′ ∈ (0, 1). The holon phase-shifts (61) have poles on the physical sheet for
botha-type andb-type boundary conditions located at the positions((1− h′)/h′)i and i/h,
respectively. Thus boundary bound states exist in the regionsh′ > 1

2 andh > 1. We see
that a sufficiently strong boundary field is needed for a bound state to be formed.

Let us now dicuss the validity of our ‘incomplete’ 1/L analysis of the densities/counting
functions. As pointed out above a complete analytical treatment encounters significant
technical difficulties. However, our results can be checked numerically in the following
way: if the shift in integration boundary would lead to an additional term of order 1/L,
equation (56) should be incorrect to order one. We performed an explicit numerical
evaluation of3p and λh corresponding to integersL/n and L/m with n and m fixed
by solving the Bethe equations (52) for chains up to 600 sites. Through insertion of the
numerical values ofλh and3p into (56) it is then possible to check whether the neglected
finite-size effects contribute to order one in the counting functions. We found no evidence
for any missing contribution to the boundary phase-shifts. We therefore conclude that for
the half-filled band the shift in integration boundary can indeed be neglected.
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4.2. The boundaryS-matrix for the less than half-filled band

Let us now turn to the case of the less than half-filled band. It is a well known fact that below
half-filling the scattering matrices are not functions of the differences of the rapidities of
the scattering particles any longer. Therefore we need to replace (50) by an appropriately
generalized prescription. This can be accomplished by following through the arguments
used in [4] to derive (50): first of all the scattering considered below is diagonal in the
sense that whenever a spinon or holon bounces off a wall, it merely changes its rapidity
λ to −λ and acquires a phase-shift. Secondly the wavefunctions of the excitations on our
finite interval with fixed boundary conditions are standing waves of states with opposite
rapidities, which leads to the condition

exp(iLp(λ1))S(λ1, λ2)K1(λ1, h1) = exp(−iLp(λ1))S(−λ1, λ2)K1(−λ1, hL) (62)

wherep(λ) is again the physical momentum of the corresponding (infinite) periodic system
and S(λ, ν) are the bulk scattering matrices. The extraction of the boundary phase-shifts
from evaluating the counting functions at the spectral parameters of the holons/spinons
is much more problematic than for the half-filled case as now the integration boundary
B corresponding to the charge Fermi sea is finite and the issue of how to treat the 1/L

corrections toB arises.

5. Conclusion

In this work we have studied zero-temperature boundary effects in an open supersymmetric
t–J chain with boundary fields. Surface contributions to ground state properties were
evaluated as functions of the boundary fields and the phase-shifts acquired by holons and
spinons scattering off a boundary were determined. It also would be interesting to extend the
analysis to finite temperatures. This appears to be difficult as among other things the usual
expression for the entropy [39] has to be modified in order to project out the spurious states.
The best way to deal with these problems seems to be a thermal Bethe ansatz analysis [40].

The (sub-leading) finite-size corrections to the ground-state energy, and energies of
low-lying excited states, can be evaluated by means of the Euler–Maclaurin sum formula
as well. This was done for the case of theaa-boundary conditions and zero bulk magnetic
field in [41]. That analysis, which can be straightforwardly extended to the other sets of
integrable boundary conditions considered here, allows to make contact with conformal field
theory in a geometry with boundary [42].
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Appendix A

In this appendix we derive the expression (13) for the ground state energy. The ground state
for given magnetic fieldH and chemical potentialµ is obtained by filling all vacancies for
the integersI 1

α from 1 to Imax = N↓ + Nh and all vacancies for the integersJγ between 1
andJmax = Nh. Inserting this description into the Bethe equations (9) and then subtracting
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subsequent equations forα andα + 1 andγ andγ + 1 we obtain the following equations
for the densities%s(λα) = 1/L(λα+1 − λα) and%c(λ(1)γ ) = 1/L(λ(1)γ+1 − λ(1)γ ):

%s(λα) = 2a1(λα)− 1

L

∑
β

a2(λα − λβ)+ a2(λα + λβ)

+ 1

L

∑
γ

a1(λα − λ(1)γ )+ a1(λα + λ(1)γ )+ 1

L

(
κ ′
ij (λα)

2π
+ a1(λα)

)

%c(λ
(1)
γ ) = 1

L

∑
α

a1(λ
(1)
γ − λα)+ a1(λ

(1)
γ + λα)+ 1

2πL
ω′
ij (λ

(1)
γ ) .

(A1)

Hereκ ′
ij (λ) andω′

ij (λ) are the derivatives ofκ(1)ij (λ) andωij (λ) defined in (11), respectively.
Now we follow [4] and rewrite (A1) in terms of a set of ‘doubled’ variables

να =
{ −λN↓+Hh−α α = 0, . . . , N↓ +Nh

λα−N↓−Nh α = N↓ +Nh + 1, . . . ,2(N↓ +Nh)

ν(1)γ =
 −λ(1)Nh−γ γ = 0, . . . , Nh

λγ−Nh γ = Nh + 1, . . . ,2Nh

(A2)

where we definedλ0 = 0 andλ(1)0 = 0. Now we take the thermodynamic limit of the
equations (A1) written in the new variables. This is done by using the Euler–Maclaurin
sum formula to turn sums into integrals (see, e.g, [13, 43, 44]). Care has to be exercised in
order to take into account the fact that terms depending on the spectral parameters located at
zero must be subtracted explicitly. After some manipulations we arrive at following coupled
integral equations for the densitiesρs(να) = 1/L(να+1−να) andρc(ν(1)γ ) = 1/L(ν(1)γ+1−ν(1)γ ):

ρs(λ) = 2a1(λ)−
∫ A+

−A+
dµ a2(λ− µ) ρs(µ)+

∫ B+

−B+
dµ a1(λ− µ)ρc(µ)

+ 1

L

(
κ ′
ij (λ)

2π
+ a2(λ)

)
ρc(λ) =

∫ A+

−A+
dµ a1(λ− µ) ρs(µ)+ 1

L

(
ω′
ij (λ)

2π
− a1(λ)

) (A3)

whereA+ andB+ are the spectral parameters corresponding to the maximal taken integers
I 1
α andJγ plus 1

2. Higher order terms in the Euler–Maclaurin expansion have been dropped
as they turn out to not contribute to the surface energy.

The energy per site (6) in the thermodynamic limit can be expressed in terms of the
densitiesρs,c as†
E

L
= −

∫ A+

−A+
dν

[
πa1(ν)− H

2

]
ρs(ν)+

∫ B+

−B+
dν

[
µ

2
− H

4

]
ρc(ν)

+ 1

L

(
−µ

2
− H

4
+ Eij + 2

)
− µ− H

2
. (A4)

Note that we have divided the bare energies by two due to the fact that we are
working with the densities of the doubled variables. We also explicitly subtracted a term

† We again turn the sums into integrals by means of the Euler–Maclaurin formula.
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(1/L)(µ/2+H/4− 2) to compensate for the spurious roots at zero. To proceed further we
rewrite (A3) as an operator equation:(

I − K̂ss −K̂sc
−K̂cs I − K̂cc

)
∗

(
ρs

ρc

)
=

(
ρ(0)s

ρ(0)c

)
(A5)

whereI is the identity operator and∗ denotes convolution with the appropriate kernel, e.g.,

−K̂ss ∗ ρs
∣∣
λ

= ∫ A+

−A+ dµa2(λ− µ)ρs(µ) and where

ρ(0)s = 2a1(λ)+ 1

L

(
κ ′
ij (λ)

2π
+ a2(λ)

)
ρ(0)c = 1

L

(
ω′
ij (λ)

2π
− a1(λ)

)
. (A6)

We note that the above integral kernels are all symmetric. In what follows we use the
shorthand notation(id − K̂)abρb = ρ(0)a for (A5). Let us now define quantitiesεs(λ) and
εc(λ) through the integral equations(id − K̂)abεb = ε(0)a , whereε(0)s (λ) = −2πa1(λ) + H

andε(0)c (λ) = µ−H/2. With χ = −µ/2 −H/4 +Eij + 2 the energy per site can now be
written as

E

L
= 1

2

∑
b=s,c

∫ C+
b

−C+
b

dµ ε(0)b (µ)ρb(µ)− µ− H

2
+ χ

L

= 1

2

∑
a,b=s,c

∫ C+
b

−C+
b

dµ ε(0)b (µ)(id − K̂)−1
ba ∗ ρ(0)a

∣∣∣∣
µ

− µ− H

2
+ χ

L

= 1

2

∑
a=s,c

∫ C+
a

−C+
a

dµ εa(µ)ρ
(0)
a (µ)− µ− H

2
+ χ

L
(A7)

whereC+
s = A+ andC+

c = B+. In the thermodynamic limit the ground state is obtained
by minimizingE with respect to the integration boundariesA+ andB+ (see, e.g., [44]), i.e.
∂E/∂C+

a

∣∣
C+
a =Ca = 0, whereCs = A, Cc = B. From this fact it follows that the integration

boundariesC+
a in (A7) can be replaced byCa with error of O(L−2), which does not affect

the surface energy we are after. In other words we can replaceC+
a by Ca (up to O(L−2))

due to the fact that the dressed energies vanish at the integration boundaries. This finally
establishes (13).

Appendix B

In this appendix we outline how to evaluate the integral (38). We first note that via Fourier
transform the following equality can be established:∫ A

−A
dµ aS(µ) εs(µ) = −2πGS(0)+ H

2
+ 2

∫ ∞

0
dµ

[
G1+S(µ+ A)− aS(µ+ A)

]
y(µ)

+
∫ B

−B
GS(µ)εc(µ) . (B1)

The last term on the right-hand side is readily evaluated by using the fact thatGS(µ) is
smooth around zero and thus can be Taylor expanded∫ B

−B
GS(µ)εc(µ) = −2ζ(3)B3GS(0) . (B2)

The second term on the right-hand side (which will be denoted byR2 in the following) is
more difficult to treat. In the region whereS � A we can use the asymptotic expansions
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G1+S(µ + A) ∼ (1 + S)/4π(µ + A)2 and aS(µ + A) ∼ S/2π(µ + A)2 to determine the
leading contribution to the integral. We then Laplace transform 1/(µ+A)2 and after some
manipulations arrive at∫ ∞

0
dµ

1

(A+ µ)2
y(µ) =

∫ ∞

0
dx xe−Axỹ+(ix) . (B3)

Due to the strongly decaying factor e−Ax the leading contribution to this integral clearly
comes from the region aroundx = 0. Expanding̃y+(ix) aroundx = 0 we finally obtain

R2 = S − 1

2

H

lnH
+ subleading terms. (B4)

In the regionS � A the above strategy for determiningR2 is not applicable. Instead we
Fourier transform and arrive at

R2 = − 1

2πA

∫ ∞

0
dω

e−((S−1)/2A)ω

cosh(ω/2A)

{
cosω

(
ỹ+

(
ω

A

)
+ ỹ+

(
−ω
A

))

+i sinω

(
ỹ+

(
ω

A

)
− ỹ+

(
−ω
A

))}
. (B5)

We again have a strongly decaying factor in the integrand (recall that(S − 1)/2A � 1) so
that we can expand the other terms aroundω = 0. The problem we run into now is that
the subleading terms in the expansion ofy(λ) contribute in an important way. The leading
contribution ofy1 to R2 is found to be (after expanding̃y+

1 aroundω = 0 only elementary
integrals are encountered)

−H
2

+ H

π2

ln(S − 1)

S − 1
− 2H lnH

π2(S − 1)
. (B6)

The second term is precisely cancelled by the leading contribtuion fromy2 to R2, whereas
the further terms are all small compared with−2H lnH/π2(S − 1).
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